Pure rotational transitions of silicon monosulfide ((28)Si(32)S) and its rare isotopic species have been observed in their ground as well as vibrationally excited states by employing Fourier transform microwave (FTMW) spectroscopy of a supersonic molecular beam at centimetre wavelengths (13-37 GHz) and by using long-path absorption spectroscopy at millimetre and submillimetre wavelengths (127-925 GHz). The latter measurements include 91 transition frequencies for (28)Si(32)S, (28)Si(33)S, (28)Si(34)S, (29)Si(32)S and (30)Si(32)S in upsilon = 0, as well as 5 lines for (28)Si(32)S in upsilon = 1, with rotational quantum numbers J''< or = 52. The centimetre-wave measurements include more than 300 newly recorded lines. Together with previous data they result in almost 600 transitions (J'' = 0 and 1) from all twelve possible isotopic species, including (29)Si(36)S and (30)Si(36)S, which have fractional abundances of about 7 x 10(-6) and 4.5 x 10(-6), respectively. Rotational transitions were observed from upsilon = 0 for the least abundant isotopic species to as high as upsilon = 51 for the main species. Owing to the high spectral resolution of the FTMW spectrometer, hyperfine structure from the nuclear electric quadrupole moment of (33)S was resolved for species containing this isotope, as was much smaller nuclear spin-rotation splitting for isotopic species involving (29)Si. By combining the measurements here with previously published microwave and infrared data in one global fit, an improved set of spectroscopic parameters for SiS has been derived which include several terms describing the breakdown of the Born-Oppenheimer approximation. With this parameter set, highly accurate rotational frequencies for this important astronomical molecule can now be predicted well into the terahertz region.
Sulfenic acid (HSOH, 1) has been synthesized in the gas-phase by low-pressure high-temperature (1150 degrees C) pyrolysis of di-tert-butyl sulfoxide (tBu(2)SO, 2) and characterized by means of matrix isolation and gas-phase IR spectroscopy. High-level coupled-cluster (CC) calculations (CCSD(T)/cc-pVTZ and CCSD(T)/cc-pVQZ) support the first identification of the gas-phase IR spectrum of 1 and enable its spectral characterization. Five of the six vibrational fundamentals of matrix-isolated 1 have been assigned, and its rotational-resolved gas-phase IR spectrum provides additional information on the O-H and S-H stretching fundamentals. Investigations of the pyrolysis reaction by mass spectrometry, matrix isolation, and gas-phase FT-IR spectroscopy reveal that, up to 500 degrees C, 2 decomposes selectively into tert-butylsulfenic acid, (tBuSOH, 3), and 2-methylpropene. The formation of the isomeric sulfoxide (tBu(H)SO, 3 a) has been excluded. Transient 3 has been characterized by a comprehensive matrix and gas-phase vibrational IR study guided by the predicted vibrational spectrum calculated at the density functional theory (DFT) level (B3LYP/6-311+G(2d,p)). At higher temperatures, the intramolecular decomposition of 3, monitored by matrix IR spectroscopy, yields short-lived 1 along with 2-methylpropene, but also H(2)O, and most probably sulfur atoms. In addition, HSSOH (6), H(2), and S(2)O are found among the final pyrolysis products observed at 1150 degrees C in the gas phase owing to competing intra- and intermolecular decomposition routes of 3. The decomposition routes of the starting compound 2 and of the primary intermediate 3 are discussed on the basis of experimental results and a computational study performed at the B3LYP/6-311G* and second-order Møller-Plesset (MP2/6-311G* and RI-MP2/QZVPP) levels of theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.