(1) Background: In spite of the undeniable clinical value of the index of microvascular resistance (IMR) in assessing the status of coronary microcirculation, its use globally remains very low. The aim of this study was to validate the novel single-view, pressure-wire- and adenosine-free angiographic microvascular resistance (AMR) index, having the invasive wire-based IMR as a reference standard. (2) Methods: one hundred and sixty-three patients (257 vessels) were investigated with pressure wire-based IMR. Microvascular dysfunction (CMD) was defined by IMR ≥ 25. AMR was independently computed from the diagnostic coronary angiography in a blinded fashion. (3) Results: AMR demonstrated a good correlation (r = 0.83, p < 0.001) and diagnostic performance (AUC 0.94; 95% CI: 0.91 to 0.97) compared with wire-based IMR. The best cutoff value for AMR in determining IMR ≥ 25 was 2.5 mmHg*s/cm. The overall diagnostic accuracy of AMR was 87.2% (95% CI: 83.0% to 91.3%), with a sensitivity of 93.5% (95% CI: 87.0% to 97.3%), a specificity of 82.7% (95% CI: 75.6% to 88.4%), a positive predictive value of 79.4% (95% CI: 71.2% to 86.1%) and a negative predictive value of 94.7% (95% CI: 89.3% to 97.8%). No difference in terms of CMD rate was described among different clinical presentations. (4) Conclusions: AMR derived solely from a single angiographic view is a feasible computational alternative to pressure wire-based IMR, with good diagnostic accuracy in assessing CMD.
Background: Fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) disagree in about 20% of intermediate coronary lesions. As the physiological pattern of coronary artery disease has a significant influence on FFR-iFR discordance, we sought to assess it may impact on the diagnostic accuracy of quantitative flow reserve (QFR).Methods: One hundred and ninety-four patients with 224 intermediate coronary lesions were investigated with iFR, FFR, and QFR. The physiological pattern of disease was assessed with iFR Scout pullback and QFR virtual pullback in all the cases.Results: A predominantly physiologically focal pattern was observed in 81 (36.2%) lesions, whereas a predominantly physiologically diffuse was observed in 143 (63.8%) cases. QFR demonstrated a significant correlation (r = 0.581, p < 0.001) and a substantial agreement with iFR, both in diffuse (AUC = 0.798) and in focal (AUC = 0.812) pattern of disease. Discordance between QFR and iFR was observed in 51 (22.8%) lesions, consisting of iFR+/QFRÀ (64.7%) and iFRÀ/QFR+ (35.3%).Notably, the physiological pattern of disease was the only variable significantly associated with iFR/QFR discordance. QFR virtual pullback demonstrated an excellent agreement (83.9%) with iFR Scout pullback in classifying the physiological pattern of disease.Conclusions: QFR has a good diagnostic accuracy in assessing myocardial ischemia independently of the pattern of coronary disease. However, the physiological pattern of disease has an influence on the QFR/iFR discordance, which occurs in $20% of the cases. The QFR virtual pullback correctly defined the physiological pattern of disease in the majority of the cases using the iFR pullback as reference.
Aortic stenosis (AS) may present frequently combined with other valvular diseases or mixed with aortic regurgitation, with peculiar physio-pathological and clinical implications. The hemodynamic interactions between AS in mixed or combined valve disease depend on the specific combination of valve lesions and may result in diagnostic pitfalls at echocardiography; other imaging modalities may be helpful. Indeed, diagnosis is challenging because several echocardiographic methods commonly used to assess stenosis or regurgitation have been validated only in patients with the single-valve disease. Moreover, in the developed world, patients with multiple valve diseases tend to be older and more fragile over time; also, when more than one valvular lesion needs to address the surgical risk rises together with the long-term risk of morbidity and mortality associated with multiple valve prostheses, and the likelihood and risk of reoperation. Therefore, when AS presents mixed or combined valve disease, the heart valve team must integrate various parameters into the diagnosis and management strategy, including suitability for single or multiple transcatheter valve procedures. This review aims to summarize the most critical pathophysiological mechanisms underlying AS when associated with mitral regurgitation, mitral stenosis, aortic regurgitation, and tricuspid regurgitation. We will focus on echocardiography, clinical implications, and the most important treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.