We investigate strong Nash equilibria in the max k-cut game, where we are given an undirected edge-weighted graph together with a set {1, . . . , k} of k colors. Nodes represent players and edges capture their mutual interests. The strategy set of each player v consists of the k colors. When players select a color they induce a k-coloring or simply a coloring. Given a coloring, the utility (or payoff ) of a player u is the sum of the weights of the edges {u, v} incident to u, such that the color chosen by u is different from the one chosen by v. Such games form some of the basic payoff structures in game theory, model lots of real-world scenarios with selfish agents and extend or are related to several fundamental classes of games. Very little is known about the existence of strong equilibria in max k-cut games. In this paper we make some steps forward in the comprehension of it. We first show that improving deviations performed by minimal coalitions can cycle, and thus answering negatively the open problem proposed in [13]. Next, we turn our attention to unweighted graphs. We first show that any optimal coloring is a 5-SE in this case. Then, we introduce x-local strong equilibria, namely colorings that are resilient to deviations by coalitions such that the maximum distance between every pair of nodes in the coalition is at most x. We prove that 1-local strong equilibria always exist. Finally, we show the existence of strong Nash equilibria in several interesting specific scenarios.
We study PAC learnability and PAC stabilizability of Hedonic Games (HGs), i.e., efficiently inferring preferences or core-stable partitions from samples. We first expand the known learnability/stabilizability landscape for some of the most prominent HGs classes, providing results for Friends and Enemies Games, Bottom Responsive, and Anonymous HGs. Then, having a broader view in mind, we attempt to shed light on the structural properties leading to learnability/stabilizability, or lack thereof, for specific HGs classes. Along this path, we focus on the fully expressive Hedonic Coalition Nets representation of HGs. We identify two sets of conditions that lead to efficient learnability, and which encompass all of the known positive learnability results. On the side of stability, we reveal that, while the freedom of choosing an ad hoc adversarial distribution is the most obvious hurdle to achieving PAC stability, it is not the only one. First, we show a distribution independent necessary condition for PAC stability. Then, we focus on W-games, where players have individual preferences over other players and evaluate coalitions based on the least preferred member. We prove that these games are PAC stabilizable under the class of bounded distributions, which assign positive probability mass to all coalitions. Finally, we discuss why such a result is not easily extendable to other HGs classes even in this promising scenario. Namely, we establish a purely computational property necessary for achieving PAC stability.
No abstract
We study PAC learnability and PAC stabilizability of Hedonic Games (HGs), i.e., efficiently inferring preferences or core-stable partitions from samples. We first expand the known learnability/stabilizability landscape for some of the most prominent HGs classes, providing results for Friends and Enemies Games, Bottom Responsive, and Anonymous HGs. Then, having a broader view in mind, we attempt to shed light on the structural properties leading to learnability/stabilizability, or lack thereof, for specific HGs classes. Along this path, we focus on the fully expressive Hedonic Coalition Nets representation of HGs. We identify two sets of conditions that lead to efficient learnability, and which encompass all of the known positive learnability results. On the side of stability, we reveal that, while the freedom of choosing an ad hoc adversarial distribution is the most obvious hurdle to achieving PAC stability, it is not the only one. First, we show a distribution independent necessary condition for PAC stability. Then, we focus on W-games, where players have individual preferences over other players and evaluate coalitions based on the least preferred member. We prove that these games are PAC stabilizable under the class of bounded distributions, which assign positive probability mass to all coalitions. Finally, we discuss why such a result is not easily extendable to other HGs classes even in this promising scenario. Namely, we establish a purely computational property necessary for achieving PAC stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.