We study a stochastic lattice particle system with exclusion principle. A kinetic equation and its diffusion limit are formally derived from the Monte Carlo dynamics. This derivation is investigated analytically and numerically and compared with the classical hydrodynamic limit of the stochastic exclusion process. Numerical results are presented for different values of jump probabilities
We present a network formulation for a traffic flow model with nonlocal velocity in the flux function. The modeling framework includes suitable coupling conditions
at intersections to either ensure maximum flux or distribution parameters. In particular, we focus on 1-to-1, 2-to-1 and 1-to-2 junctions. Based on an upwind type numerical scheme, we prove the maximum principle and the existence of weak solutions on networks. We also investigate the limiting behavior of the proposed models when the nonlocal influence tends to infinity. Numerical examples show the difference between the proposed coupling conditions and a comparison to the Lighthill-Whitham-Richards network model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.