Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies.
Zn is essential for growth and development. The bioavailability of Zn is affected by several factors such as other food components. It is therefore of interest, to understand uptake mechanisms of Zn delivering compounds to identify ways to bypass the inhibitory effects of these factors. Here, we studied the effect of Zn amino acid conjugates (ZnAAs) on the bioavailabilty of Zn. We used Caco-2 cells and enterocytes differentiated from human induced pluripotent stem cells from a control and Acrodermatitis enteropathica (AE) patient, and performed fluorescence based assays, protein biochemistry and atomic absorption spectrometry to characterize cellular uptake and absorption of ZnAAs. The results show that ZnAAs are taken up by AA transporters, leading to an intracellular enrichment of Zn mostly uninhibited by Zn uptake antagonists. Enterocytes from AE patients were unable to gain significant Zn through exposure to ZnCl2 but did not show differences with respect to ZnAAs. We conclude that ZnAAs may possess an advantage over classical Zn supplements such as Zn salts, as they may be able to increase bioavailability of Zn, and may be more efficient in patients with AE.Electronic supplementary materialThe online version of this article (doi:10.1007/s10534-017-0033-y) contains supplementary material, which is available to authorized users.
Phelan McDermid Syndrome (PMDS) is a genetic disorder characterized by features of Autism spectrum disorders. Similar to reports of Zn deficiency in autistic children, we have previously reported high incidence of Zn deficiency in PMDS. However, the underlying mechanisms are currently not well understood. Here, using inductively coupled plasma mass-spectrometry to measure the concentration of Zinc (Zn) and Copper (Cu) in hair samples from individuals with PMDS with 22q13.3 deletion including SHANK3 (SH3 and multiple ankyrin repeat domains 3), we report a high rate of abnormally low Zn/Cu ratios. To investigate possible underlying mechanisms, we generated enterocytes from PMDS patient-derived induced pluripotent stem cells and used Caco-2 cells with knockdown of SHANK3. We detected decreased expression of Zn uptake transporters ZIP2 and ZIP4 on mRNA and protein level correlating with SHANK3 expression levels, and found reduced levels of ZIP4 protein co-localizing with SHANK3 at the plasma membrane. We demonstrated that especially ZIP4 exists in a complex with SHANK3. Furthermore, we performed immunohistochemistry on gut sections from Shank3αβ knockout mice and confirmed a link between enterocytic SHANK3, ZIP2 and ZIP4. We conclude that apart from its well-known role in the CNS, SHANK3 might play a specific role in the GI tract.
A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.