The growth of a single brood of lobsters (Homarus americanus Milne-Edwards 1837) maintained at constant temperature is studied from the naupliar stage to hatching, and the sequence of appearance of morphological, anatomical, and behavioral characteristics observed. A percent-staging system based upon Perkins' eye index (1972) is presented, and ten equally spaced embryonic stages are illustrated and characterized at different levels of resolution: whole eggs, dissected embryos, antennulae and telsons. The tegumentary and setal changes in the telson show that a complete molt cycle takes place in the egg starting at about 12% embryonic development (E12%) with the molt of the nauplius into the metanauplius and ending just after hatching when the metanauplius molts into a first stage larva (L1, first zoea). At E30%, the cuticle begins to separate from the setae in the telson; this signals the start of Drach's (1939) stage D0 of the metanaupliar embryonic molt cycle. At that time, the first sign of organogenesis of the L1, the formation of the endopod of the antennulae, becomes visible; presumed sensory neurons and their axons are observed at the tip of the exopod of the antennulae where a giant sensillum is differentiating. During D0 the setae of the first larval stage are forming proximally and medially in the bilobed telson under the metanaupliar cuticle. At E90%, these setae are retracting, and the embryo has entered stage D1. After hatching (E100%), the telson of the free metanauplius (prelarva) shows the characteristics of stage D2-3 and ecdysis soon follows. The arrested development observed at constant temperature in the experimental brood occurred at stage D0 of the metanaupliar molt cycle, whereas development was resumed as the embryos entered stage D1. These changes in developmental pace from D0 to D1 in the embryonic molt cycle are parallel to those occurring in older lobsters (Aiken, 1973). The quantitative staging of lobster development from extrusion to hatching, and the description of the embryonic molt cycle will facilitate future investigations on particular aspects of the embryogenesis of Homarus such as neural differentiation.
As a catecholamine, dopamine belongs to a class of molecules that have multiple transmitter and hormonal functions in vertebrate and invertebrate nervous systems. However, in the lobster, where many central neurons have been identified and the peripheral innervation pattern is well known, the distribution of dopamine-containing neurons has not been examined in detail. Therefore, immunocytochemical methods were used to identify neurons likely to contain dopamine and tyrosine hydroxylase in the central nervous system of the juvenile lobster Homarus gammarus. Approximately 100 neuronal somata stain for the catecholamine and/or its synthetic enzyme in the brain and ventral nerve cord. The systems of neurons labeled with dopamine and tyrosine hydroxylase antibodies have the following characteristics: 1) the two systems are nearly identical; 2) every segmental ganglion contains at least one pair of labeled neurons; 3) the positions and numbers of cell bodies labeled with each antiserum are similar in the various segmental ganglia; 4) six labeled neurons are anatomically identified; two interneurons from the brain project within the ventral cord to reach the last abdominal ganglion, two neurons from the commissural ganglia are presumably neurosecretory neurons, and two anterior unpaired medial abdominal neurons project to the hindgut muscles; and 5) no cell bodies are labeled in the stomatogastric ganglion, but fibers and terminals in the neuropil are stained. The remarkably small numbers of labeled neurons and the presence of very large labeled somata with far-reaching projections are distinctive features consistent with other modulatory aminergic systems in both vertebrates and invertebrates.
Gammarus lacustris infected with cystacanths of Polymorphus paradoxus display an abnormal behavior. They respond to disturbance by swimming to the surface and clinging to a solid object (W. M. Bethel and J. C. Holmes. 1973. J. Parasitol. 59: 945–956). Uninfected gammarids injected with serotonin (1–20 μg/50 mg) but not other neurotransmitters also responded to mechanical stimulation by clinging, but the response lasted for a shorter time than in infected gammarids. Octopamine suppressed the clinging response in infected gammarids for several hours. The results suggest that cystacanths of P. paradoxus modulate the behavior of gammarids through the alteration of neural activity in some serotonin-sensitive or serotonergic central pathway, probably one involved in precopulatory clinging in male amphipods.
The larval flatworm Microphallus papillorobustus encysts in the protocerebrum of its intermediate host, Gammarus insensibilis, and changes the gammarid's responses to mechanical and photic stimuli. The resulting aberrant escape behaviour renders infected gammarids more susceptible to predation by birds, the definitive hosts of the parasite. We used immunocytochemical methods to explore the mechanisms underlying these subtle behavioural modifications. Whole mounts of gammarid brains were labelled with fluorescent anti-serotonin and anti-synapsin antibodies and viewed using confocal microscopy. Two types of change were observed in infected brains: the intensity of the serotonergic label was altered in specific regions of the brain, and the architecture of some serotonergic tracts and neurons was affected. A morphometric analysis of the distribution of the label showed that serotonergic immunoreactivity was decreased significantly (by 62%) in the optic neuropils, but not in the olfactory lobes, in the presence of the parasite. In addition, the optic tracts and the tritocerebral giant neurons were stunted in parasitized individuals. Published evidence demonstrates changes in serotonin levels in hosts ranging from crustaceans to mammals infected by parasites as diverse as protozoans and helminths. The present study suggests that the degeneration of discrete sets of serotonergic neurons might underlie the serotonergic imbalance and thus contribute to host manipulation.
Serotonin (5-HT) and proctolin, neurohormones widely distributed in the lobster nervous system, have been implicated in a variety of behaviors and also are known to coexist in large pairs of identified neurons in the fifth thoracic (T5) and first abdominal ganglia (A1) of adults (Siwicki, Beltz, and Kravitz, 1987). Earlier studies also have shown that these paired neurons already contain 5-HT in embryos approximately halfway through development, whereas proctolin immunoreactivity does not appear in these cells until near the time of hatching (Beltz and Kravitz, 1987a). In the current studies, the brain and ventral nerve cord have been screened for the appearance of serotonin and proctolin immunoreactivities using immunocytochemical and biochemical methods, in order to determine whether the late appearance of proctolin in the paired T5 and A1 cells is a general feature of development in other neurons as well. In embryos approximately halfway through development, the adult complement of 5-HT-staining cells is already present. In several cases, embryonic serotonin cells are proportionally very large and prominent, suggesting possible developmental roles. In contrast to serotonin, fewer than 10% of the proctolin-staining neurons of juvenile animals are seen in embryos halfway through development. The number of immunoreactive cells gradually increases, but even by the sixth larval stage only half the number of cells that will eventually stain for proctolin are observed. Therefore, the developmental appearance of proctolin in lobster neurons, assayed using immunocytochemical methods, is relatively late and protracted compared to the appearance of serotonin. Quantitative measurements for 5-HT in lobster larvae were performed using high pressure liquid chromatography (HPLC) with dual electrochemical detection and for proctolin using radioimmunoassay. A gradual, probably growth-related increase in the amounts of serotonin and proctolin were seen during larval development. The implications of the biochemical data, in light of the immunocytochemical studies, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.