Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation -and associated ecosystem consequences -have the potential to be much greater than we have observed to date.
Whilst many methodological challenges lie ahead, comparative cryptogam ecology has the potential to meet some of the important challenges of understanding and predicting the biogeochemical and climate consequences of large-scale environmental changes driving shifts in the cryptogam components of vegetation composition.
Summary1. Climate change in the subarctic is expected to influence vegetation composition, specifically bryophyte and lichen communities, thereby modifying litter decomposition rates and carbon (C) dynamics of these systems with possible feedbacks to climate. 2. In a 2-year experiment, we investigated decomposition rates and chemical traits of 27 bryophytes, 17 lichens and 5 vascular plants in litter beds in subarctic Sweden. The majority of the sampled cryptogam species are widespread at higher northern latitudes. 3. Average 2-year litter decomposition rates (exponential mass loss constant k) of lichen (0.44 ± 0.01) and vascular plant (0.56 ± 0.03) species were higher than that of bryophytes (0.11 ± 0.01), while within main cryptogam taxa, species identity was an important determinant of mass loss rates. At cryptogam group level, 2-year litter mass loss of Sphagnum was significantly lower than for non-Sphagnum mosses and liverworts. Within lichens, N 2 -fixing versus non-N 2 -fixing lichens showed no variation in decomposability. 4. In a subset of the large species set, mass loss differed both among incubation environments (reflecting nutrient-rich and poor birch forest and Sphagnum peatlands, respectively) and species. The pattern of mass loss across incubation environments was not consistent among cryptogam species. N 2 -fixing, in contrast to non-N 2 -fixing lichens with lower nitrogen (N) levels displayed similar decomposition rates across incubation environments. Mass loss of non-Sphagnum mosses was correlated with initial N irrespective of incubation environment. 5. Litter mass loss of cryptogam taxa could be predicted very well from infrared spectra of the initial chemical composition of the species, by application of Fourier transform infrared using an attenuated total reflectance probe. The initial macronutrient concentrations (N, phosphorus, C and cations) and initial litter pH correlated less well. 6. Synthesis. We showed comprehensively that decomposition rates of bryophytes are generally lower than those of lichens and vascular plants. Among bryophyte or lichen species there is also great variation in litter decomposability which depends strongly on species-specific chemistry. Our data will help predict changing land surface feedback to C cycles and climate in cold biomes by understanding long-term climate effects on litter decomposability through shifting vegetation composition.
Little is known about the impact of changing temperature regimes on composition and diversity of cryptogam communities in the Arctic and Subarctic, despite the well-known importance of lichens and bryophytes to the functioning and climate feedbacks of northern ecosystems. We investigated changes in diversity and abundance of lichens and bryophytes within long-term (9-16 years) warming experiments and along natural climatic gradients, ranging from Swedish subarctic birch forest and subarctic/subalpine tundra to Alaskan arctic tussock tundra. In both Sweden and Alaska, lichen diversity responded negatively to experimental warming (with the exception of a birch forest) and to higher temperatures along climatic gradients. Bryophytes were less sensitive to experimental warming than lichens, but depending on the length of the gradient, bryophyte diversity decreased both with increasing temperatures and at extremely low temperatures. Among bryophytes, Sphagnum mosses were particularly resistant to experimental warming in terms of both abundance and diversity. Temperature, on both continents, was the main driver of species composition within experiments and along gradients, with the exception of the Swedish subarctic birch forest where amount of litter constituted the best explanatory variable. In a warming experiment in moist acidic tussock tundra in Alaska, temperature together with soil ammonium availability were the most important factors influencing species composition. Overall, dwarf shrub abundance (deciduous and evergreen) was positively related to warming but so were the bryophytes Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi; the majority of other cryptogams showed a negative relationship to warming. This unique combination of intercontinental comparison, natural gradient studies and experimental studies shows that cryptogam diversity and abundance, especially within lichens, is likely to decrease under arctic climate warming. Given the many ecosystem processes affected by cryptogams in high latitudes (e.g. carbon sequestration, N 2 -fixation, trophic interactions), these changes will have important feedback consequences for ecosystem functions and climate.
The inclusion of environmental variation in studies of recruitment is a prerequisite for realistic predictions of the responses of vegetation to a changing environment. We investigated how seedling recruitment is affected by seed availability and microsite quality along a steep environmental gradient in dry tundra. A survey of natural seed rain and seedling density in vegetation was combined with observations of the establishment of 14 species after sowing into intact or disturbed vegetation. Although seed rain density was closely correlated with natural seedling establishment, the experimental seed addition showed that the microsite environment was even more important. For all species, seedling emergence peaked at the productive end of the gradient, irrespective of the adult niches realized. Disturbance promoted recruitment at all positions along the environmental gradient, not just at high productivity. Early seedling emergence constituted the main temporal bottleneck in recruitment for all species. Surprisingly, winter mortality was highest at what appeared to be the most benign end of the gradient. The results highlight that seedling recruitment patterns are largely determined by the earliest stages in seedling emergence, which again are closely linked to microsite quality. A fuller understanding of microsite effects on recruitment with implications for plant community assembly and vegetation change is provided.Electronic supplementary materialThe online version of this article (doi:10.1007/s00442-010-1878-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.