Comparative studies for evaluating distress in established animal models are still rare. However, this issue is becoming more important as a consequence of worldwide appreciation of animal welfare. One good parameter for evaluating distress is the quantification of corticosterone. We hypothesized that not just the absolute value but also the duration of increased corticosterone concentration in the blood is an important aspect for evaluating animal distress. Therefore, we analyzed plasma corticosterone concentrations 30, 60, 120, and 240 min after induction of pancreatitis by cerulein, liver damage by carbon tetrachloride, liver damage by bile duct ligation, and after orthotopic injection of pancreatic cancer cells. We also evaluated corticosterone kinetics after injection of distinct carrier substances. Compared to phosphate buffered saline, dimethyl sulfoxide leads to dose-dependent higher and longer-lasting circulating corticosterone concentrations. In all disease models, we observed significantly increased corticosterone concentration 30 min after stress induction. However, the corticosterone kinetics differed among the animal models. Both the absolute value of corticosterone concentration and the duration correlated positively with the quantification of animal distress by a score sheet. This suggests that both variables of corticosterone kinetics might provide a solid basis for comparing and grading distress of different animal models.
The Djungarian hamster is a rodent species that expresses both spontaneous daily torpor (SDT) when acclimated to winter conditions as well as fasting-induced torpor (FIT) during summer. In an earlier report we argued that these two thermoregulatory phenomena differ in several parameters. In the present study, we further complete this comparison by showing that metabolic rate patterns differ between both SDT and FIT. SDT bouts were significantly longer and deeper compared to FIT bouts. Additionally, respiratory quotient measures support the view that SDT is entered from a state of energetic balance while FIT appears to be an emergency shutdown of energy demanding thermogenesis due to a shortage of energy sources. In a second experiment, we also confirm that brief periods of food restriction during the hamsters' torpor season increase the frequency of SDT, but do not affect its depth or duration. Although winter-acclimated animals could flexibly alter torpor frequency in order to stay in energetic balance, we also found evidence for torpor expression patterns that resembled FIT, rather than SDT. Consequently, if energetic challenges cannot be compensated with increased SDT expression any longer, the hamsters seem to be driven in a negative energy balance resulting in FIT as a last resort.
ethical responsibility, legal requirements and the need to improve the quality of research create a growing interest in the welfare of laboratory animals. Judging the welfare of animals requires readout parameters, which are valid and sensitive as well as specific to assess distress after different interventions. In the present study, we evaluated the sensitivity and specificity of different non-invasive parameters (body weight change, faecal corticosterone metabolites concentration, burrowing and nesting activity) by receiver operating characteristic curves and judged the merit of a multi-parametric analysis by logistic regression. Chronic pancreatitis as well as laparotomy caused significant changes in all parameters. However, the accuracy of these parameters was different between the two animal models. in both animal models, the multi-parametric analysis relying on all the readout parameters had the highest accuracy when predicting distress. this multi-parametric analysis revealed that C57BL/6 mice during the course of chronic pancreatitis often experienced less distress than mice after laparotomy. interestingly these data also suggest that distress does not steadily increase during chronic pancreatitis. in conclusion, combining these non-invasive methods for severity assessment represents a reliable approach to evaluate animal distress in models such as chronic pancreatitis.
In this study we evaluated the interaction of pancreatic cancer cells, cancer-associated fibroblasts, and distinct drugs such as α-cyano-4-hydroxycinnamate, metformin, and gemcitabine. We observed that α-cyano-4-hydroxycinnamate as monotherapy or in combination with metformin could significantly induce collagen I deposition within the stromal reaction. Subsequently, we demonstrated that cancer-associated fibroblasts impaired the anti-proliferation efficacy of α-cyano-4-hydroxycinnamate, metformin and gemcitabine. Interestingly, inhibition of autophagy in these fibroblasts can augment the anti-proliferation effect of these chemotherapeutics in vitro and can reduce the tumor weight in a syngeneic pancreatic cancer model. These results suggest that inhibiting autophagy in cancer-associated fibroblasts may contribute to strategies targeting cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.