SAMHD1 restricts HIV-1 infection of myeloid-lineage and resting CD4+ T-cells. Most likely this occurs through deoxynucleoside triphosphate triphosphohydrolase activity that reduces cellular dNTP to a level where reverse transcriptase cannot function, although alternative mechanisms have been proposed recently. Here, we present combined structural and virological data demonstrating that in addition to allosteric activation and triphosphohydrolase activity, restriction correlates with the capacity of SAMHD1 to form “long-lived” enzymatically competent tetramers. Tetramer disruption invariably abolishes restriction but has varied effects on in vitro triphosphohydrolase activity. SAMHD1 phosphorylation also ablates restriction and tetramer formation but without affecting triphosphohydrolase steady-state kinetics. However phospho-SAMHD1 is unable to catalyse dNTP turnover under conditions of nucleotide depletion. Based on our findings we propose a model for phosphorylation-dependent regulation of SAMHD1 activity where dephosphorylation switches housekeeping SAMHD1 found in cycling cells to a high-activity stable tetrameric form that depletes and maintains low levels of dNTPs in differentiated cells.
Microtubules are cytoskeletal polymers whose function depends on their property to switch between states of growth and shrinkage. Growing microtubules are thought to be stabilized by a GTP cap at their ends. The nature of this cap, however, is still poorly understood. End Binding proteins (EBs) recruit a diverse range of regulators of microtubule function to growing microtubule ends. Whether the EB binding region is identical to the GTP cap is unclear. Using mutated human tubulin with blocked GTP hydrolysis, we demonstrate that EBs bind with high affinity to the GTP conformation of microtubules. Slowing-down GTP hydrolysis leads to extended GTP caps. We find that cap length determines microtubule stability and that the microtubule conformation changes gradually in the cap as GTP is hydrolyzed. These results demonstrate the critical importance of the kinetics of GTP hydrolysis for microtubule stability and establish that the GTP cap coincides with the EB-binding region.
Polycomb Repressive Complex 2 (PRC2) maintains repression of cell type-specific genes but also associates with genes ectopically in cancer. While it is currently unknown how PRC2 is removed from genes, such knowledge would be useful for the targeted reversal of deleterious PRC2 recruitment events. Here, we show that G-tract RNA specifically removes PRC2 from genes in human and mouse cells. PRC2 preferentially binds G-tracts within nascent pre-mRNAs, especially within predicted G-quadruplex structures. G-quadruplex RNA evicts the PRC2 catalytic core from the substrate nucleosome. PRC2 transfers from chromatin to RNA upon gene activation and chromatin-associated G-tract RNA removes PRC2, leading to H3K27me3 depletion from genes. Targeting G-tract RNA to the tumor suppressor gene CDKN2A in malignant rhabdoid tumor cells reactivates the gene and induces senescence. These data support a model in which pre-mRNA Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
A single-stranded DNA binding protein (SSB), labeled with a fluorophore, interacts with single-stranded DNA (ssDNA), giving a 6-fold increase in fluorescence. The labeled protein is the adduct of the G26C mutant of the homotetrameric SSB from Escherichia coli and a diethylaminocoumarin {N-[2-(iodoacetamido)ethyl]-7-diethylaminocoumarin-3-carboxamide}. This adduct can be used to assay production of ssDNA during separation of double-stranded DNA by helicases. To use this probe effectively, as well as to investigate the interaction between ssDNA and SSB, the fluorescent SSB has been used to develop the kinetic mechanism by which the protein and ssDNA associate and dissociate. Under conditions where ∼70 base lengths of ssDNA wrap around the tetramer, initial association is relatively simple and rapid, possibly diffusion-controlled. The kinetics are similar for a 70-base length of ssDNA, which binds one tetramer, and poly(dT), which could bind several. Under some conditions (high SSB and/or low ionic strength), a second tetramer binds to each 70-base length, but at a rate 2 orders of magnitude slower than the rate of binding of the first tetramer. Dissociation kinetics are complex and greatly accelerated by the presence of free wild-type SSB. The main route of dissociation of the fluorescent SSB·ssDNA complex is via association first with an additional SSB and then dissociation. Comparison of binding data with different lengths of ssDNA gave no evidence of cooperativity between tetramers. Analytical ultracentrifugation was used to determine the dissociation constant for labeled SSB2·dT70 to be 1.1 μM at a high ionic strength (200 mM NaCl). Shorter lengths of ssDNA were tested for binding: only when the length is reduced to 20 bases is the affinity significantly reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.