The seismic retrofit of the existing building heritage represents an urgent issue to be faced and innovative solutions which allow to overcome renovation barriers are needed. In this scenario, pin-supported (PS) walls represent an eligible solution, enabling linearization of the deformation of the frame along its height and inhibiting soft storey collapse mechanisms. The PS wall can be connected to the existing building from outside, thereby avoiding disruption to occupants or their relocation, which are acknowledged as the main barriers to the renovation nowadays. Suitability of PS wall solutions in the seismic retrofit of the existing building stock has been investigated herein, particularly in the case of existing reinforced concrete (RC) buildings, preliminarily focusing on 2D RC frames. The paper shows the weaknesses and strengths of the PS wall solution in relation to the specific features of the considered buildings. An analytical closed-form formulation is proposed and applied as a preliminary tool to evaluate the load distribution in the existing frame and in the PS wall after the retrofit considering the first mode of vibration of the retrofitted system. The results show that, in some conditions, the application of PS walls may be detrimental to the structural response. Along with the evaluation of the effectiveness of the retrofit solution, the proposed formulation allows a preliminary design of the retrofit system. Finally, a series of finite element model analyses have been carried out for validation purposes showing a good agreement between the proposed analytical formulation and the numerical results.
Abstract. The holistic renovation of existing buildings is nowadays acknowledged as an essential and urgent action to reduce the environmental impact and increase
This paper investigates the influence of overhead cranes with a hanging mass under earthquake type loading, considering the Emilia 2012 seismic sequence. The structural layout of precast concrete industrial buildings typical of the Italian territory is considered. The equations of motion describing the behavior of the hoist load are derived, and a sensitivity analysis is carried out on simplified 3 degrees of freedom systems by solving the governing differential equations. The influence of various parameters on the roof displacement and on the horizontal load transferred by the hanging mass is addressed. The considered parameters are the relative damping of the hanging mass, the length of the hoist ropes, the earthquake record, the hysteretic type of the plastic hinges at the column base, and the behavior factor of the structural system. The results show that for a horizontal component of the considered seismic sequence the structural displacements are amplified in the case of a behavior factor greater than 2.5. A simplified modeling strategy considering small displacements is also investigated. Such model is suitable for response-spectrum analyses. Finally, a three-dimensional case study is analyzed by means of non-linear time history analyses. The results show the influence of the overhead crane on the local performance of some structural and non-structural elements, such as columns and cladding panels, especially when the assumption of rigid roof diaphragm does not apply.
In recent years hinged walls have been implemented as a retrofit technique for existing RC buildings. To investigate the effectiveness of the proposed solution on different frame typologies, non-linear 2D pushover analyses have been carried out. Two main configurations were adopted, representing an inner frame with weak beams and strong columns and a side frame with strong beams and weak columns, respectively. The study shows that some computational aspects are of fundamental importance in providing reliable results, namely: the dead load distribution on the beams and the moment-axial force interaction in the columns. The hinged wall technique proves to be an effective retrofit solution only if conceived properly for each structural typology; whilst in some cases it may be detrimental when applied in the traditional way. Some new configurations are herein proposed based on new connection layouts in order to be suitable for the different typologies of existing RC frames.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.