We have engineered Trypanosoma brucei with a novel mariner transposition system that allows large populations of mutant cells to be generated and screened. As a proof of principle, we isolated and characterized two independent clones that were resistant to the cytotoxic action of concanavalin A. In both clones, the transposon had integrated into the locus encoding a homologue of human ALG12, which encodes a dolichyl-P-Man: Man 7 GlcNAc 2 -PP-dolichyl-␣6-mannosyltransferase. Conventional knock-out of ALG12 in a wild-type background gave an identical phenotype to the mariner mutants, and biochemical analysis confirmed that they have the same defect in the N-linked oligosaccharide synthesis pathway. To our surprise, both mariner mutants were homozygous; the second allele appeared to have undergone gene conversion by the marinertargeted allele. Subsequent experiments showed that the frequency of gene conversion at the ALG12 locus, in the absence of selection, was 0.25%. As we approach the completion of the trypanosome genome project, transposon mutagenesis provides an important addition to the repertoire of genetic tools for T. brucei.
Inositol acylation is an obligatory step in glycosylphosphatidylinositol (GPI) biosynthesis whereas mature GPI anchors often lack this modi®cation. The GPI anchors of Trypanosoma brucei variant surface glycoproteins (VSGs) undergo rounds of inositol acylation and deacylation during GPI biosynthesis and the deacylation reactions are inhibited by diisopropyl¯uoro-phosphate (DFP). Inositol deacylase was af®nity labelled with [ 3 H]DFP and puri®ed. Peptide sequencing was used to clone GPIdeAc, which encodes a protein with signi®cant sequence and hydropathy similarity to mammalian acyloxyacyl hydrolase, an enzyme that removes fatty acids from bacterial lipopolysaccharide. Both contain a signal sequence followed by a saposin domain and a GDSL-lipase domain. GPIdeAc ±/± trypanosomes were viable in vitro and in animals. Af®nity-puri®ed HA-tagged GPIdeAc was shown to have inositol deacylase activity. However, total inositol deacylase activity was only reduced in GPIdeAc ±/± trypanosomes and the VSG GPI anchor was indistinguishable from wild type. These results suggest that there is redundancy in T.brucei inositol deacylase activity and that there is another enzyme whose sequence is not recognizably related to GPIdeAc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.