Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Atrial fibrillation (AF) is the most prevalent arrhythmia, often caused by myocardial ischemia/infarction (MI). Men have a 1.5× higher prevalence of AF, whereas women show a higher risk for new onset AF after MI. However, the underlying mechanisms of how sex affects AF pathophysiology are largely unknown. In 72 pigs with/without ischemic heart failure (IHF) we investigated the impact of sex on ischemia-induced proarrhythmic atrial remodeling and the susceptibility for AF. Electrocardiogram (ECG) and electrophysiological studies were conducted to assess electrical remodeling; histological analyses were performed to assess atrial fibrosis in male and female pigs. IHF pigs of both sexes showed a significantly increased vulnerability for AF, but in male pigs more and longer episodes were observed. Unchanged conduction properties but enhanced left atrial fibrosis indicated structural rather than electrical remodeling underlying AF susceptibility. Sex differences were only observed in controls with female pigs showing an increased intrinsic heart rate, a prolonged QRS interval and a prolonged sinus node recovery time. In sum, susceptibility for AF is significantly increased both in male and female pigs with ischemic heart failure. Differences between males and females are moderate, including more and longer AF episodes in male pigs and sinus node dysfunction in female pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.