Clozapine, atypical antipsychotic, can change oxidative stress parameters. It is known that reactive species, in excess, can have a crucial role in the etiology of diseases, as well as, can potentiating adverse effects induce by drugs. The nanocapsules have attracted attention as carriers of several drugs, with consequent reduction of adverse effects. This study aimed to evaluate histopathology and oxidative damage of biomolecules lipids, proteins and DNA in the brain of Wistar rats after treatment with nanocapsules containing clozapine. The study consisted of eight groups of male Wistar rats (n = 6): saline (SAL), free clozapine (CZP) (25 mg/Kg i.p.), blank uncoated nanocapsules (BNC), clozapine-loaded uncoated nanocapsules (CNC) (25 mg/Kg i.p.), blank chitosan-coated nanocapsules (BCSN), clozapine-loaded chitosan-coated nanocapsules (CCSN) (25 mg/Kg i.p.), blank polyethyleneglycol-coated nanocapsules (BPEGN), clozapine-loaded polyethyleneglycol-coated nanocapsules (CPEGN) (25 mg/Kg i.p.). The animals received the formulation once a day for seven consecutive days and euthanized in the eighth day. After euthanasia, the brain was collected and homogenate was processed for further analysis. The histopathology showed less brain tissue damage in nanocapsules-treated groups. The lipid peroxidation and carbonylation of proteins showed a significant increase (p < 0.05) induced by CZP. CNC and CPEGN groups obtained a reduction membrane of lipids damage and nanocapsules-treated groups showed significant improvement protein damage. CZP was able to induce genetic oxidative damage, while the nanocapsules causing less damage to DNA. The findings show that different coatings can act protecting target tissues decreasing oxidative damage, suggesting that the drug when linked to different nanocapsules is able to mitigate the harmful effects of clozapine.
The aim of this work was to develop and characterize clozapine loaded polysorbate-coated polymeric nanocapsules and assess their toxicity in Caenorhabditis elegans, an invertebrate animal model. Formulations were prepared by nanoprecipitation method and characterized by particle size, zeta potential, pH, drug loading, entrapment efficiency and in vitro drug release. All nanocapsules prepared presented diameter around 140 nm, pH slightly acid and negative zeta potential. In vitro studies showed biphasic drug release from nanocapsules with decreasing of the release rate on nanoencapsulation. The t(1/2)beta of clozapine was 7.23 +/- 0.73 and 2.23 +/- 0.97 h for nanoencapsulated and free drug, respectively (p < 0.05), in pH 1.2 medium. Similar results were obtained in pH 6.8 buffer. Regarding toxicity evaluation, worms exposed to clozapine-loaded nanocapsules did not show the same mortality rate compared to others formulations, as the survival was significantly higher than the free drug treated-group. In addition, we observed that free clozapine decreased egg laying at the first reproductive day, whereas nanoencapsulated clozapine did not depict significant change of this parameter. Longevity assay showed no significant difference, demonstrating that the toxicological effects of clozapine observed in C. elegans are acute. In addition, we proved that free and nanoencapsulated clozapine were orally uptake by the worms, as determined by fluorescein-labeled nanocapsules. Then, the use of nanocapsules delayed the drug release and minimized the toxic effects of clozapine in worms, which can be used as a new animal model to evaluate the nanotoxicity of drug delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.