Thyroid hormone is a critical regulator of growth, development, and metabolism in virtually all tissues, and altered thyroid status affects many organs and systems. Although for many years testis has been regarded as a thyroid hormone unresponsive organ, it is now evident that thyroid hormone plays an important role in testicular development and function. A considerable amount of data show that thyroid hormone influences steroidogenesis as well as spermatogenesis. The involvement of tri-iodothyronine (T 3 ) in the control of Sertoli cell proliferation and functional maturation is widely accepted, as well as its role in postnatal Leydig cell differentiation and steroidogenesis. The presence of thyroid hormone receptors in testicular cells throughout development and in adulthood implies that T 3 may act directly on these cells to bring about its effects. Several recent studies have employed different methodologies and techniques in an attempt to understand the mechanisms underlying thyroid hormone effects on testicular cells. The current review aims at presenting an updated picture of the recent advances made regarding the role of thyroid hormones in male gonadal function.
Thyroid hormone is essential for the normal function of virtually all tissues. The iodothyronine deiodinases catalyze the removal of an iodine residue from the pro-hormone thyroxine (T 4 ) molecule, thus producing either the active form triiodothyronine (T 3 ; activation) or inactive metabolites (reverse T 3 ; inactivation). Type I deiodinase (D1) catalyzes both reactions. Over the last years, several studies have attempted to understand the mechanisms of D1 function, underlying its effects on normal thyroid hormone metabolism and pathological processes. Although peripheral D1-generated T 3 production contributes to a portion of plasma T 3 in euthyroid state, pathologically increased thyroidal D1 activity seems to be the main cause of the elevated T 3 concentrations observed in hyperthyroid patients. On the other hand, D1-deficient mouse models show that, in the absence of D1, inactive and lesser iodothyronines are excreted in feces with the loss of associated iodine, demonstrating the scavenging function for D1 that might be particularly important in an iodine deficiency setting. Polymorphisms in the DIO1 gene have been associated with changes in serum thyroid hormone levels, whereas decreased D1 activity has been reported in the nonthyroid illness syndrome and in several human neoplasias. The current review aims at presenting an updated picture of the recent advances made in the biochemical and molecular properties of D1 as well as its role in human physiology.
Nonthyroidal illness syndrome (NTIS) is a state of low serum 3,5,3′ triiodothyronine (T 3 ) that occurs in chronically ill patients; the degree of reduction in T 3 is associated with overall prognosis and survival. Iodothyronine deiodinases are enzymes that catalyze iodine removal from thyroid hormones; type I and II deiodinase (D1 and D2, respectively) convert the prohormone thyroxine T 4 to active T 3 , whereas the type III enzyme (D3) inactivates T 4 and T 3 . Increased production of cytokines, including IL-6, is a hallmark of the acute phase of NTIS, but the role of cytokines in altered thyroid hormone metabolism is poorly understood. Here, we measured the effect of IL-6 on both endogenous cofactor-mediated and dithiothreitol-stimulated (DTT-stimulated) cell sonicate deiodinase activities in human cell lines. Active T 3 generation by D1 and D2 in intact cells was suppressed by IL-6, despite an increase in sonicate deiodinases (and mRNAs). N-acetylcysteine (NAC), an antioxidant that restores intracellular glutathione (GSH) concentrations, prevented the IL-6-induced inhibitory effect on D1-and D2-mediated T 3 production, which suggests that IL-6 might function by depleting an intracellular thiol cofactor, perhaps GSH. In contrast, IL-6 stimulated endogenous D3-mediated inactivation of T 3 . Taken together, these results identify a single pathway by which IL-6-induced oxidative stress can reduce D1-and D2-mediated T 4 -to-T 3 conversion as well as increasing D3-mediated T 3 (and T 4 ) inactivation, thus mimicking events during illness.
The non-thyroidal illness syndrome (NTIS) refers to changes in serum thyroid hormone levels observed in critically ill patients in the absence of hypothalamic–pituitary–thyroid primary dysfunction. Affected individuals have low T3, elevated rT3, and inappropriately normal TSH levels. The pathophysiological mechanisms are poorly understood but the acute and chronic changes in pituitary–thyroid function are probably the consequence of the action of multiple factors. The early phase seems to reflect changes occurring primarily in the peripheral thyroid hormone metabolism, best seen in humans since 80–90% of the circulating T3 are derived from the pro-hormone T4. The conversion of T4 to T3 is catalyzed by type 1 (D1) and type 2 (D2) deiodinases via outer-ring deiodination. In contrast, type 3 deiodinase (D3) catalyzes the inactivation of both T4 and T3. Over the last decades, several studies have attempted to elucidate the mechanisms underlying the changes on circulating thyroid hormones in NTIS. Increased inflammatory cytokines, which occurs in response to virtually any illness, has long been speculated to play a role in derangements of deiodinase expression. On the other hand, oxidative stress due to augmented reactive oxygen species (ROS) generation is characteristic of many diseases that are associated with NTIS. Changes in the intracellular redox state may disrupt deiodinase function by independent mechanisms, which might include depletion of the as yet unidentified endogenous thiol cofactor. Here we aim to present an updated picture of the advances in understanding the mechanisms that result in the fall of thyroid hormone levels in the acute phase of NTIS.
The VEGF-A, VEGFR-1, and VEGFR-2 immunoreactive proteins are overexpressed in MTC lesions and might be implicated in tumor progression. It is not clear, however, if expression of these molecules provides prognostic information regarding the spread or outcome of MTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.