The first edition of the Aspects of Neuroscience Brainhack took place at the Department of Physics at University of Warsaw, Poland between November 17th and 19th 2017. This hackathon was one of the satellite events of the Aspects of Neuroscience conference, it was organized by the Brainhack organization to promote interaction between researchers, encouraging open (neuro)science and collaborations on projects related to the study of the nervous system. The event had a total of nine projects on many different topics including functional connectivity research, white matter tractography, classification of brain-ageing biomarkers through machine learning, presentation of a portable one channel EEG registration device and a do it yourself 3D-printed neurobiology lab. The latter is highlighted in this paper.
We exemplify an interdisciplinary approach wherein a mesoscopic-scale functional model of a biological system is derived from time-series recordings, yielding transfer functions that can be used to design analog electronic circuits. Namely, sensory processing in the honey bee, a universal model for studying olfaction, is considered. Existing studies have focused on its antennal lobe, wherein only the responses of its functional units, known as glomeruli, have been accessible. Here, high temporal resolution calcium imaging is deployed to track the dynamics of odor-evoked activity beyond this processing stage. The responses in the somata outside of the antennal lobe are recorded, showing for the first time how the glomerular signals are transformed before entering the higher brain centers. A transfer function approach is applied to capture as a "gray box model" the remarkably heterogeneous signal transformations between odor input and glomerular response, and between glomerular signals and somata activity. The somata are tentatively mapped to the glomeruli via Granger causality, while machine learning classification and clustering allow grouping common properties regarding response amplitudes and temporal profiles. The obtained low-order transfer functions display time-and frequency-domain input-output properties closely similar to the biological system. Because transfer functions have universal applicability, once they have been determined, it is readily possible to design corresponding analog electronic circuits, with possible future applications in sensor signal conditioning. To exemplify this, examples based on resistor-capacitor (RC) networks and operational amplifiers are physically built and confirmed to generate responses highly correlated to the initial biological recordings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.