We discuss the quantization of linearized gravity on globally hyperbolic, asymptotically flat, vacuum spacetimes and the construction of distinguished states which are both of Hadamard form and invariant under the action of all bulk isometries. The procedure, we follow, consists of looking for a realization of the observables of the theory as a sub-algebra of an auxiliary, non-dynamical algebra constructed on future null infinity ℑ + . The applicability of this scheme is tantamount to proving that a solution of the equations of motion for linearized gravity can be extended smoothly to ℑ + . This has been claimed to be possible provided that a suitable gauge fixing condition, first written by Geroch and Xanthopoulos, is imposed. We review its definition critically showing that there exists a previously unnoticed obstruction in its implementation leading us to introducing the concept of radiative observables. These constitute an algebra for which a Hadamard state induced from null infinity and invariant under the action of all spacetime isometries exists and it is explicitly constructed.
Abstract. We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of Hadamard form, provided that the time integral of the spatial supnorm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.
In this paper, the Cauchy problem for a Friedrichs system on a globally hyperbolic manifold with a timelike boundary is investigated. By imposing admissible boundary conditions, the existence and the uniqueness of strong solutions are shown. Furthermore, if the Friedrichs system is hyperbolic, the Cauchy problem is proved to be well-posed in the sense of Hadamard.Finally, examples of Friedrichs systems with admissible boundary conditions are provided.
We give an elementary proof that Abelian Chern-Simons theory, described as a functor from oriented surfaces to C * -algebras, does not admit a natural state. Non-existence of natural states is thus not only a phenomenon of quantum field theories on Lorentzian manifolds, but also of topological quantum field theories formulated in the algebraic approach.
Recently, a new functional analytic construction of quasi-free states for a self-dual CAR algebra has been presented in [FiRe16]. This method relies on the so-called strong mass oscillation property. We provide an example where this requirement is not satisfied, due to the nonvanishing trace of the solutions of the Dirac equation on the horizon of Rindler space, and we propose a modification of the construction in order to weaken this condition. Finally, a connection between the two approaches is built.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.