Phosphorus resources have to be managed sustainably and therefore the recycling of P from waste streams is essential. A thermo-chemical recycling process has been developed to produce a P fertilizer from sewage sludge ash (SSA) but its plant availability is unknown. Methods Two SSA products prepared with either CaCl 2 (SSACa) or MgCl 2 (SSAMg) as chemical reactant during the thermal treatment were mixed with three soils previously labeled with 33 P. Reference treatments with water-soluble P added at equal amounts of total P were included. The transfer of P from SSACa and SSAMg to Lolium multiflorum or P pools of sequentially extracted soil-fertilizer incubations were quantified. Results The shoot P uptake from SSAMg was higher than from SSACa. For SSAMg the relative effectiveness compared to a water-soluble P fertilizer was 88 % on an acidic and 71 % on a neutral soil but only 4 % on an alkaline soil. The proportion of P derived from the fertilizer in the plant and in the first two extraction pools of soil-fertilizer incubations were strongly correlated, suggesting that it is sufficient to conduct an incubation study to obtain robust information on plant P availability. Conclusions We conclude that under acidic to neutral conditions SSAMg presents an appropriate alternative to conventional P fertilizers and the dissolution of P from SSAMg seems to be governed by protons and cations in the soil solution.
Urine contains about 50 % of the phosphorus (P) and about 90 % of the nitrogen (N) excreted by humans and is therefore an interesting substrate for nutrient recovery. Source-separated urine can be used to precipitate struvite or, through a newly developed technology, nitrified urine fertilizer (NUF). In this study, we prepared 33P radioisotope- and stable 15N isotope-labeled synthetic NUF (SNUF) and struvite using synthetic urine and determined P and N uptake by greenhouse-grown ryegrass (Lolium multiflorum var. Gemini) fertilized with these products. The P and N in the urine-based fertilizers were as readily plant-available in a slightly acidic soil as the P and N in reference mineral fertilizers. The ryegrass crop recovered 26 % of P applied with both urine-based fertilizers and 72 and 75 % of N applied as struvite and SNUF, respectively. Thus, NUF and urine-derived struvite are valuable N and P recycling fertilizers.Electronic supplementary materialThe online version of this article (doi:10.1007/s13280-014-0616-6) contains supplementary material, which is available to authorized users.
Producing a P fertilizer from sewage sludge ash (SSA) is a strategy to efficiently recycle P from a secondary raw material. The P speciation in four SSAs was characterized before and after the removal of heavy metals by a thermo-chemical treatment that involved CaCl addition. We chose complementary techniques to determine the direct P speciation, including X-ray powder diffraction, solid-state P direct-polarization magic-angle spinning nuclear magnetic resonance, and X-ray absorption near edge structure. Results from these techniques were compared with operational and functional speciation information obtained from a sequential P extraction and a plant biotest with Italian ryegrass grown on a soil-sand mixture with little available P. The speciation of P in untreated and thermo-chemically treated SSAs depended on their elemental composition. At a molar ratio of Ca:P ≤ 2, SSAs contained combinations of polymorphs of AlPO, β-tricalcium phosphate, and apatite-like P species. In SSAs with a molar ratio of Ca:P > 2, an apatite-like molecular environment was predominant. The thermo-chemical process induced an increase in crystalline phases and enhanced the crystallinity of the P species. The structural order of the bulk sample was the most decisive parameter in controlling the P availability of the studied SSAs to plants. We conclude that, to produce a high-quality fertilizer and despite of the successful heavy metal removal, the thermo-chemical process requires further development toward enhanced P bioavailability.
Nitrogen (N) is often the most limiting nutrient in organic cropping systems. N 2 fixing crops present an important option to improve N supply and to maintain soil fertility. In a field experiment, we investigated whether the lower N fertilization level and higher soil microbial activity in organic than conventional systems affected symbiotic N 2 fixation by soybean (Glycine max, var. Maple Arrow) growing in 2004 in plots that were since 1978 under the following systems: biodynamic (DYN); bio-organic (ORG); conventional with organic and mineral fertilizers (CON); CON with exclusively mineral fertilizers (MIN); non-fertilized control (NON). We estimated the percentage of legume N derived from the atmosphere (%Ndfa) by the natural abundance (NA) method. For ORG and MIN we additionally applied the enriched 15 N isotope dilution method (ID) based on residual mineral and organic 15 N labeled fertilizers that were applied in 2003 in microplots installed in ORG and MIN plots. These different enrichment treatments resulted in equal %Ndfa values. The %Ndfa obtained by NA for ORG and MIN was confirmed by the ID method, with similar variation. However, as plant growth was restricted by the microplot frames the NA technique provided more accurate estimates of the quantities of symbiotically fixed N 2 (Nfix). At maturity of soybean the %Ndfa ranged from 24 to 54%. It decreased in the order ORG > CON > DYN > NON > MIN, with significantly lowest value for MIN. Corresponding Nfix in above ground plant material ranged from 15 to 26 g N m -2 , with a decreasing trend in the order DYN = ORG > CON > MIN > NON. For all treatments, the N withdrawal by harvested grains was greater than Nfix. This shows that at the low to medium %Ndfa, soybeans did not improve the N supply to any system but removed significant amounts of soil N. High-soil N mineralization and/or low-soil P availability may have limited symbiotic N 2 fixation.
Nitrogen (N) utilisation by crops has to be improved to minimize losses to the environment. We investigated N use efficiency of animal manure and mineral fertiliser and fate of fertiliser N not taken up by crops in a conventional (CONMIN) and a bioorganic (BIOORG) cropping system of a long-term field experiment over three vegetation periods (winter wheat-soybean-maize). Microplots planted with wheat received a single application of 15 N-labelled slurries (either urine or faeces labelled) or mineral fertiliser. At the end of each vegetation period we tested whether higher microbial activity and larger microbial biomass in BIOORG than CONMIN soils, and lower long-term N input level in BIOORG, affected use efficiency and fate of fertiliser N not taken up by crops. Recovery of 15 N in wheat was 37%, 10% and 47% from urine, faeces and mineral fertiliser, respectively, and decreased strongly in the residual years. In total 41%, 15% and 50% of 15 N applied as urine, faeces and mineral fertiliser was recovered by the three crops. 15 N recovered from originally applied urine, faeces and mineral fertiliser in the topsoil (0-18 cm) at the end of the third vegetation period was 19%, 25% and 20%, respectively. Of urine-, faeces-and mineral fertiliser-15 N, 40%, 61% and 29%, respectively, was not recovered by the three crops and in topsoil suggesting significant transport of 15 N-labelled components to deeper soil layers. CONMIN and BIOORG differed neither in fertiliser N use efficiency by crops nor in 15 N recovery in soil indicating insignificant difference in the turnover and utilization of the applied manure nitrogen in the conventional and the bio-organic cropping systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.