The effects of climate change on water resources could be numerous and widespread, affecting water quality and water security across the globe. Variations in rainfall erosivity and temporal patterns, along with changes in biomass and land use, are some of the impacts climate change is projected to have on soil erosion. Sedimentation of watercourses and reservoirs, especially in water-stressed regions such as sub-Saharan Africa, may hamper climate change resilience. Modelling sediment yield under various climate change scenarios is vital to develop mitigation strategies which offset the negative effects of erosion and ensure infrastructure remains sustainable under future climate change. This study investigated the relative change in sediment yield with projected climate change using the Soil and Water Assessment Tool (SWAT) for a rural catchment in South Africa for the period 2015–2100. Data from six downscaled Coupled Global Climate Models (CGCM) were divided into three shorter time periods, namely, 2015–2034, 2045–2064 and 2081–2100. Results were then compared with a control scenario using observed data for the period 2002–2017. The results show that, if left unmanaged, climate change will likely lead to greater sediment yield, of up to 10% more per annum. Peak sediment yield will also increase almost three-fold throughout the century. The study shows that projected climate change will have multiple negative effects on soil erosion and emphasised the need for changes in climate to be considered when embarking on water resource developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.