We present an anisotropic extension of the isotropic osmosis model that has been introduced by Weickert et al. [38] for visual computing applications, and we adapt it specifically to shadow removal applications. We show that in the integrable setting, linear anisotropic osmosis minimises an energy that involves a suitable quadratic form which models local directional structures. In our shadow removal applications we estimate the local structure via a modified tensor voting approach [24] and use this information within an anisotropic diffusion inpainting that resembles edge-enhancing anisotropic diffusion inpainting [39,13]. Our numerical scheme combines the nonnegativity preserving stencil of Fehrenbach and Mirebeau [10] with an exact time stepping based on highly accurate polynomial approximations of the matrix exponential. The resulting anisotropic model is tested on several synthetic and natural images corrupted by constant shadows. We show that it outperforms isotropic osmosis, since it does not suffer from blurring artefacts at the shadow boundaries.
Abstract. We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.
The last 50 years have seen an impressive development of mathematical methods for the analysis and processing of digital images, mostly in the context of photography, biomedical imaging and various forms of engineering. The arts have been mostly overlooked in this process, apart from a few exceptional works in the last 10 years. With the rapid emergence of digitisation in the arts, however, the arts domain is becoming increasingly receptive to digital image processing methods and the importance of paying attention to this therefore increases. In this paper we discuss a range of mathematical methods for digital image restoration and digital visualisation for illuminated manuscripts. The latter provide an interesting opportunity for digital manipulation because they traditionally remain physically untouched. At the same time they also serve as an example for the possibilities mathematics and digital restoration offer as a generic and objective toolkit for the arts.
Electronic supplementary material
The online version of this article (10.1186/s40494-018-0216-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.