Reactive oxygen species (ROS) are highly reactive molecules, mainly generated inside mitochondria that can oxidize DNA, proteins, and lipids. At physiological levels, ROS function as “redox messengers” in intracellular signalling and regulation, whereas excess ROS induce cell death by promoting the intrinsic apoptotic pathway. Recent work has pointed to a further role of ROS in activation of autophagy and their importance in the regulation of aging. This review will focus on mitochondria as producers and targets of ROS and will summarize different proteins that modulate the redox state of the cell. Moreover, the involvement of ROS and mitochondria in different molecular pathways controlling lifespan will be reported, pointing out the role of ROS as a “balance of power,” directing the cell towards life or death.
BRCA1-associated protein 1 (BAP1) is a potent tumor suppressor gene that modulates environmental carcinogenesis1-3. All carriers of inherited heterozygous germline BAP1 inactivating mutations (BAP1+/-) developed one and often several BAP1-/- malignancies in their lifetime4, mostly malignant mesothelioma (MM), uveal melanoma (UVM)2,5, etc6-10. Moreover, BAP1 acquired biallelic mutations are frequent in human cancers8,11-14. BAP1 tumor suppressor activity has been attributed to its nuclear localization where BAP1 helps maintaining genome integrity15-17. The possible activity of BAP1 in the cytoplasm was unknown. Cells with reduced levels of BAP1 exhibit chromosomal abnormalities and decreased DNA repair by homologous recombination18, indicating that BAP1 dosage is critical. Cells with extensive DNA damage should die and not grow into malignancies. We discovered that BAP1 localizes at the endoplasmic reticulum (ER). Here BAP1 binds, deubiquitylates and stabilizes type-3 inositol-1,4,5-trisphosphate-receptor (IP3R3), modulating calcium (Ca2+) release from the ER into the cytosol and mitochondria, promoting apoptosis. Reduced levels of BAP1 in BAP1+/- carriers caused reduction of both IP3R3 levels and Ca2+ flux, preventing BAP1+/- cells that had accumulated DNA damage from executing apoptosis. A higher fraction of cells exposed to either ionizing or ultraviolet radiation, or to asbestos, survived genotoxic stress resulting in a higher rate of cellular transformation. We propose that the high incidence of cancers in BAP1+/- carriers results from the combined reduced nuclear and cytoplasmic BAP1 activities. Our data provide a mechanistic rationale for the powerful ability of BAP1 to regulate gene-environment interaction.
The endoplasmic reticulum (ER) and mitochondria are tubular organelles with a characteristic "network structure" that facilitates the formation of interorganellar connections. The ER and mitochondria join together at multiple contact sites to form specific domains, termed mitochondria-ER associated membranes (MAMs), with distinct biochemical properties and a characteristic set of proteins. The functions of these two organelles are coordinated and executed at the ER-mitochondria interface, which provides a platform for the regulation of different processes. The roles played by the ER-mitochondria interface range from the coordination of calcium transfer to the regulation of mitochondrial fission and inflammasome formation as well as the provision of membranes for autophagy. The novel and unconventional processes that occur at the ER-mitochondria interface demonstrate its multifunctional and intrinsically dynamic nature. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.