Most Facial Expression Recognition (FER) systems rely on machine learning approaches that require large databases for an effective training. As these are not easily available, a good solution is to augment the databases with appropriate data augmentation (DA) techniques, which are typically based on either geometric transformation or oversampling augmentations (e.g., generative adversarial networks (GANs)). However, it is not always easy to understand which DA technique may be more convenient for FER systems because most state-of-the-art experiments use different settings which makes the impact of DA techniques not comparable. To advance in this respect, in this paper, we evaluate and compare the impact of using well-established DA techniques on the emotion recognition accuracy of a FER system based on the well-known VGG16 convolutional neural network (CNN). In particular, we consider both geometric transformations and GAN to increase the amount of training images. We performed cross-database evaluations: training with the "augmented" KDEF database and testing with two different databases (CK+ and ExpW). The best results were obtained combining horizontal reflection, translation and GAN, bringing an accuracy increase of approximately 30%. This outperforms alternative approaches, except for the one technique that could however rely on a quite bigger database.
Smart buildings use Internet of Things (IoT) sensors for monitoring indoor environmental parameters, such as temperature, humidity, luminosity, and air quality. Due to the huge amount of data generated by these sensors, data analytics and machine learning techniques are needed to extract useful and interesting insights, which provide the input for the building optimization in terms of energy-saving, occupants’ health and comfort. In this paper, we propose an IoT-based smart building (SB) solution for indoor environment management, which aims to provide the following main functionalities: monitoring of the room environmental parameters; detection of the number of occupants in the room; a cloud platform where virtual entities collect the data acquired by the sensors and virtual super entities perform data analysis tasks using machine learning algorithms; a control dashboard for the management and control of the building. With our prototype, we collected data for 10 days, and we built two prediction models: a classification model that predicts the number of occupants based on the monitored environmental parameters (average accuracy of 99.5%), and a regression model that predicts the total volatile organic compound (TVOC) values based on the environmental parameters and the number of occupants (Pearson correlation coefficient of 0.939).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.