The main goal of this work was to assess the performance of different initializations of matrix factorization algorithms for an accurate identification of muscle synergies. Currently, nonnegative matrix factorization (NNMF) is the most commonly used method to identify muscle synergies. However, it has been shown that NNMF performance might be affected by different kinds of initialization. The present study aims at optimizing the traditional NNMF initialization for data with partial or complete temporal dependencies. For this purpose, three different initializations are used: random, SVD-based, and sparse. NNMF was used to identify muscle synergies from simulated data as well as from experimental surface EMG signals. Simulated data were generated from synthetic independent and dependent synergy vectors (i.e., shared muscle components), whose activation coefficients were corrupted by simulating controlled degrees of correlation. Similarly, EMG data were artificially modified, making the extracted activation coefficients temporally dependent. By measuring the quality of identification of the original synergies underlying the data, it was possible to compare the performance of different initialization techniques. Simulation results demonstrate that sparse initialization performs significantly better than all other kinds of initialization in reconstructing muscle synergies, regardless of the correlation level in the data.
BackgroundThe above-knee amputation of a lower limb is a severe impairment that affects significantly the ability to walk; considering this, a complex adaptation strategy at the neuromuscular level is needed in order to be able to move safely with a prosthetic knee. In literature, it has been demonstrated that muscle activity during walking can be described via the activation of a small set of muscle synergies. The analysis of the composition and the time activation profiles of such synergies have been found to be a valid tool for the description of the motor control schemes in pathological subjects.MethodsIn this study, we used muscle synergy analysis techniques to characterize the differences in the modular motor control schemes between a population of 14 people with trans-femoral amputation and 12 healthy subjects walking at two different (slow and normal self-selected) speeds. Muscle synergies were extracted from a 12 lower-limb muscles sEMG recording via non-negative matrix factorization. Equivalence of the synergy vectors was quantified by a cross-validation procedure, while differences in terms of time activation coefficients were evaluated through the analysis of the activity in the different gait sub-phases.ResultsFour synergies were able to reconstruct the muscle activity in all subjects. The spatial component of the synergy vectors did not change in all the analysed populations, while differences were present in the activity during the sound limb’s stance phase. Main features of people with trans-femoral amputation’s muscle synergy recruitment are a prolonged activation of the module composed of calf muscles and an additional activity of the hamstrings’ module before and after the prosthetic heel strike.ConclusionsSynergy-based results highlight how, although the complexity and the spatial organization of motor control schemes are the same found in healthy subjects, substantial differences are present in the synergies’ recruitment of people with trans femoral amputation. In particular, the most critical task during the gait cycle is the weight transfer from the sound limb to the prosthetic one. Future studies will integrate these results with the dynamics of movement, aiming to a complete neuro-mechanical characterization of people with trans-femoral amputation’s walking strategies that can be used to improve the rehabilitation therapies.
Muscle synergy analysis is a useful tool for the evaluation of the motor control strategies and for the quantification of motor performance. Among the parameters that can be extracted, most of the information is included in the rank of the modular control model (i.e. the number of muscle synergies that can be used to describe the overall muscle coordination). Even though different criteria have been proposed in literature, an objective criterion for the model order selection is needed to improve reliability and repeatability of MSA results. In this paper, we propose an Akaike Information Criterion (AIC)-based method for model order selection when extracting muscle synergies via the original Gaussian Non-Negative Matrix Factorization algorithm. The traditional AIC definition has been modified based on a correction of the likelihood term, which includes signal dependent noise on the neural commands, and a Discrete Wavelet decomposition method for the proper estimation of the number of degrees of freedom of the model, reduced on a synergy-by-synergy and event-by-event basis. We tested the performance of our method in comparison with the most widespread ones, proving that our criterion is able to yield good and stable performance in selecting the correct model order in simulated EMG data. We further evaluated the performance of our AIC-based technique on two distinct experimental datasets confirming the results obtained with the synthetic signals, with performances that are stable and independent from the nature of the analysed task, from the signal quality and from the subjective EMG pre-processing steps.
Prosthetic gait implies the use of compensatory motor strategies, including alterations in gait biomechanics and adaptations in the neural control mechanisms adopted by the central nervous system. Despite the constant technological advancements in prostheses design that led to a reduction in compensatory movements and an increased acceptance by the users, a deep comprehension of the numerous factors that influence prosthetic gait is still needed. The quantitative prosthetic gait analysis is an essential step in the development of new and ergonomic devices and to optimize the rehabilitation therapies. Nevertheless, the assessment of prosthetic gait is still carried out by a heterogeneous variety of methodologies, and this limits the comparison of results from different studies, complicating the definition of shared and well-accepted guidelines among clinicians, therapists, physicians, and engineers. This perspective article starts from the results of a project funded by the Italian Worker's Compensation Authority (INAIL) that led to the generation of an extended dataset of measurements involving kinematic, kinetic, and electrophysiological recordings in subjects with different types of amputation and prosthetic components. By encompassing different studies published along the project activities, we discuss the specific information that can be extracted by different kinds of measurements, and we here provide a methodological perspective related to multimodal prosthetic gait assessment, highlighting how, for designing improved prostheses and more effective therapies for patients, it is of critical importance to analyze movement neural control and its mechanical actuation as a whole, without limiting the focus to one specific aspect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.