Neural precursor cells of the ventricular zone give rise to all neurons and glia of the central nervous system and rely for maintenance of their precursor characteristics on the closely related SoxB1 transcription factors Sox1, Sox2 and Sox3. We show in mouse spinal cord that, whereas SoxB1 proteins are usually downregulated upon neuronal specification, they continue to be expressed in glial precursors. In the oligodendrocyte lineage, Sox2 and Sox3 remain present into the early phases of terminal differentiation. Surprisingly, their deletion does not alter precursor characteristics but interferes with proper differentiation. Although a direct influence on myelin gene expression may be part of their function, we provide evidence for another mode of action. SoxB1 proteins promote oligodendrocyte differentiation in part by negatively controlling miR145 and thereby preventing this microRNA from inhibiting several pro-differentiation factors. This study presents one of the few cases in which SoxB1 proteins, including the stem cell factor Sox2, are associated with differentiation rather than precursor functions.
The Sox10 transcription factor is a central regulator of vertebrate neural crest and nervous system development. Its expression is likely controlled by multiple enhancer elements, among them U3 (alternatively known as MCS4). Here we analyze U3 activity to obtain deeper insights into Sox10 function and expression in the neural crest and its derivatives. U3 activity strongly depends on the presence of Sox10 that regulates its own expression as commonly observed for important developmental regulators. Sox10 bound directly as monomer to at least three sites in U3, whereas a fourth site preferred dimers. Deletion of these sites efficiently reduced U3 activity in transfected cells and transgenic mice. In stimulating the U3 enhancer, Sox10 synergized with many other transcription factors present in neural crest and developing peripheral nervous system including Pax3, FoxD3, AP2α, Krox20 and Sox2. In case of FoxD3, synergism involved Sox10-dependent recruitment to the U3 enhancer, while Sox10 and AP2α each had to bind to the regulatory region. Our study points to the importance of autoregulatory activity and synergistic interactions for maintenance of Sox10 expression and functional activity of Sox10 in the neural crest regulatory network.
Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents.
Abbreviations used: EMSA, electrophoretic mobility shift assays; HEK293, human embryonic kidney cells; MSE, myelinating Schwann cell element; POU, Pit1-Oct1/2-Unc86. AbstractThe high-mobility group domain transcription factor Sox10 is believed to influence myelination in Schwann cells by directly activating myelin genes and by inducing Krox20 as a pivotal regulator of peripheral myelination. Krox20 induction at this stage is thought to be mediated by the myelinating Schwann cell element 35 kb downstream of the Krox20 transcriptional start site and requires cooperation with Oct6. Here, we prove for the first time in vivo that Schwann cell-specific Krox20 expression indeed depends on Sox10. We also provide evidence that Sox10 functions through multiple, mostly monomeric binding sites in the myelinating Schwann cell element in a manner that should render the enhancer exquisitely sensitive to Sox10 levels. Synergistic activation of the enhancer by Sox10 and Oct6 furthermore does not involve cooperative binding to closely spaced binding sites in defined composite elements. Nevertheless, the POU domain of Oct6 and the high-mobility group domain of Sox10 as the two DNA-binding domains were both essential indicating that each transcription factor has to bind independently to DNA. Whereas the POU domain was the only important region of Oct6, two further Sox10 domains were required for synergistic Krox20 activation. These were the carboxyterminal transactivation domain and the conserved K2 domain in the central portion of Sox10. All required regions are conserved in several closely related POU and Sox proteins thus explaining why Oct6 and Sox10 can be replaced by their relatives during Krox20 induction in myelinating Schwann cells.
Neuroepithelial precursor cells of the vertebrate central nervous system either self-renew or differentiate into neurons, oligodendrocytes or astrocytes under the influence of a gene regulatory network that consists in transcription factors, epigenetic modifiers and microRNAs. Sox transcription factors are central to this regulatory network, especially members of the SoxB, SoxC, SoxD, SoxE and SoxF groups. These Sox proteins are widely expressed in neuroepithelial precursor cells and in newly specified, differentiating and mature neurons, oligodendrocytes and astrocytes and influence their identity, survival and development. They exert their effect predominantly at the transcriptional level but also have substantial impact on expression at the epigenetic and posttranscriptional levels with some Sox proteins acting as pioneer factors, recruiting chromatin-modifying and -remodelling complexes or influencing microRNA expression. They interact with a large variety of other transcription factors and influence the expression of regulatory molecules and effector genes in a cell-type-specific and temporally controlled manner. As versatile regulators with context-dependent functions, they are not only indispensable for central nervous system development but might also be instrumental for the development of reprogramming and cell conversion strategies for replacement therapies and for assisted regeneration after injury or degeneration-induced cell loss in the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.