SUMMARYWe propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piecewise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear and nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.
The complex phenomena underlying mechanical contraction of cardiac cells and their influence in the dynamics of ventricular contraction are extremely important in understanding the overall function of the heart. In this paper we generalize previous contributions on the active strain formulation and propose a new model for the excitation-contraction coupling process. We derive an evolution equation for the active fiber contraction based on configurational forces, which is thermodynamically consistent. Geometrically, we link microscopic and macroscopic deformations giving rise to an orthotropic contraction mechanism that is able to represent physiologically correct thickening of the ventricular wall. A series of numerical tests highlights the importance of considering orthotropic mechanical activation in the heart and illustrates the main features of the proposed model.
Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.