RESUMO: "Atividades antiinflamatória e antinociceptiva do eugenol em modelos experimentais em animais". Eugenia caryophyllata, popularmente conhecida como "cravo-daíndia", cresce naturalmente na Indonésia e é cultivada em várias partes do mundo, incluindo o Brasil. O cravo-da-índia é utilizado em culinária, em farmácia, perfumaria e cosméticos. O óleo essencial extraído do cravo-da-índia cujo principal componente é o eugenol tem sido utilizado em odontologia como anti-séptico e analgésico. O objetivo deste estudo foi avaliar as atividades antiinflamatória e antinociceptiva do eugenol de uso odontológico, administrado oralmente, em modelos experimentais in vivo. A atividade antiinflamatória do eugenol foi avaliada através do volume de exsudato e migração leucocitária no teste de pleurisia e do edema de pata de rato induzido pela carragenina. A atividade antinociceptiva foi avaliada através dos testes de contorções induzidas pelo ácido acético e da placa quente. O eugenol (200 e 400 mg/kg) reduziu o volume de exsudato pleural sem interferir na contagem de leucócitos totais presentes na pleura. Na dose de 200 mg/kg, o eugenol inibiu significativamente o edema de pata, 2-4 h após a injeção do agente flogístico. No teste da placa quente, a administração do eugenol (100 mg/kg) mostrou atividade significativa à reação de desconforto-tempo dependente, avaliada como a latência da resposta, inibida pela meperidina. Eugenol na doses de 50, 75 e 100 mg/kg apresentou efeito antinociceptivo significativo no teste de contorções abdominais induzidas pelo ácido acético em comparação com o grupo controle. Os dados obtidos indicam que o eugenol apresenta atividade antiinflamatória e antinociceptiva periférica.Unitermos: Eugenia caryophyllata, Syzygium aromaticum, Myrtaceae, atividade antiinflamatória, atividade antinociceptiva, óleo essencial, cravo-da-índia.ABSTRACT: Eugenia caryophyllata, popular name "clove", is grown naturally in Indonesia and cultivated in many parts of the world, including Brazil. Clove is used in cooking, food processing, pharmacy; perfumery, cosmetics and the clove oil (eugenol) have been used in folk medicine for manifold conditions include use in dental care, as an antiseptic and analgesic. The objective of this study was evaluated the anti-inflammatory and antinociceptive activity of eugenol used for dentistry purposes following oral administration in animal models in vivo. The anti-inflammatory activity of eugenol was evaluated by inflammatory exudates volume and leukocytes migration in carrageenan-induced pleurisy and carrageenan-induced paw edema tests in rats. The antinociceptive activity was evaluated using the acetic acid-induced writhing and hot-plate tests in mice. Eugenol (200 and 400 mg/kg) reduced the volume of pleural exudates without changing the total blood leukocyte counts. At dose of 200 mg/kg, eugenol significantly inhibited carrageenan-induced edema, 2-4 h after injection of the flogistic agent. In the hot-plate test, eugenol administration (100 mg/kg) showed unremarkable activity agai...
Rosmarinus officinalis L. (Family Lamiaceae), popularly named rosemary, is a common household plant grown in many parts of the world, including Brazil. Rosemary leaves are used for food flavoring and have been used in folk medicine for many conditions; they have antispasmodic, analgesic, antirheumatic, carminative, cholagogue, diuretic, expectorant, and antiepileptic effects. The objective of this study was to evaluate the effects of rosemary essential oil (REO) on experimental models of nociception and inflammation in animals. The anti-inflammatory effect of REO was evaluated by inflammatory exudate volume and leukocyte migration in carrageenan-induced pleurisy and carrageenan-induced paw edema tests in rats. Antinociception was evaluated using the acetic acid-induced writhing and hot plate tests in mice. REO (500 mg/kg) significantly reduced the volume of pleural exudate and slightly decreased the number of cells that had migrated compared with the control animals. At doses of 250, 500, and 750 mg/kg, REO significantly inhibited carrageenan-induced edema 1-4 hours after injection of the phlogistic agent. In the hot plate test, REO administration (125, 250, and 500 mg/kg) showed unremarkable effects on response latency, whereas control injection of meperidine induced significant antinociceptive effects. REO at doses of 70, 125, and 250 mg/kg had a significant antinociceptive effect in the acetic acid-induced abdominal writhing test compared with control animals. These data suggest that REO possesses anti-inflammatory and peripheral antinociceptive activity.
Aims Hypertension is associated with increased levels of circulating cytokines and recent studies have shown that innate immunity contributes to hypertension. The mechanisms which hypertension stimulates immune response remain unclear, but may involve formation of neoantigens that activate the immune system. Toll like receptor 4 (TLR4) is an innate immune receptor that binds a wide spectrum of exogenous (lipopolysaccharide) and endogenous ligands. TLR4 signaling leads to activation of nuclear factor kappa B (NFκB) and transcription of genes involved in inflammatory response. We previously demonstrated that TLR4 blockade reduces blood pressure and the augmented vascular contractility in spontaneously hypertensive rats (SHR). Here we hypothesized that inhibition of TLR4 ameliorates the vascular inflammatory process by a NFκB signaling pathway. Main methods SHR and Wistar rats were treated with anti-TLR4 antibody (1µg/day) or unspecific IgG for 15 days (i.p.). Key findings Anti-TLR4 treatment decreased production of reactive oxygen species and expression of IL-6 cytokine in mesenteric resistance arteries from SHR, when compared with IgG-treated SHR. Anti-TLR4 treatment also abolished the increased vascular reactivity to noradrenaline observed in IgG-treated SHR, as described before, and inhibition of NFκB decreased noradrenaline responses only in IgG-treated SHR. Mesenteric arteries from SHR treated with anti-TLR4 displayed decreased expression of MyD88, but not TRIF, key molecules in TLR4 signaling. Phosphorylation of p38 and NF-κB p65 were decreased in arteries from anti-TLR4-treated SHR versus IgG-treated SHR. Significance Together, these results suggest that TLR4 is a key player in hypertension and vascular inflammatory process by a NFκB signaling pathway.
NADPH oxidases derived reactive oxygen species (ROS) play an important role in vascular function and remodeling in hypertension through redox signaling processes. Previous studies demonstrated that protein disulfide isomerase (PDI) regulates Nox1 expression and ROS generation in cultured vascular smooth muscle cells. However, the role of PDI in conductance and resistance arteries during hypertension development remains unknown. The aim of the present study was to investigate PDI expression and NADPH oxidase dependent ROS generation during hypertension development. Mesenteric resistance arteries (MRA) and thoracic aorta were isolated from 6, 8, and 12 week-old spontaneously hypertensive (SHR) and Wistar rats. ROS production (dihydroethidium fluorescence), PDI (WB, imunofluorescence), Nox1 and NOX4 (RT-PCR) expression were evaluated. Results show a progressive increase in ROS generation in MRA and aorta from 8 to 12 week-old SHR. This effect was associated with a concomitant increase in PDI and Nox1 expression only in MRA. Therefore, suggesting a positive correlation between PDI and Nox1 expression during the development of hypertension in MRA. In order to investigate if this effect was due to an increase in arterial blood pressure, pre hypertensive SHR were treated with losartan (20 mg/kg/day for 30 days), an AT1 receptor antagonist. Losartan decreased blood pressure and ROS generation in both vascular beds. However, only in SHR MRA losartan treatment lowered PDI and Nox1 expression to control levels. In MRA PDI inhibition (bacitracin, 0.5 mM) decreased Ang II redox signaling (p-ERK 1/2). Altogether, our results suggest that PDI plays a role in triggering oxidative stress and vascular dysfunction in resistance but not in conductance arteries, increasing Nox1 expression and activity. Therefore, PDI could be a new player in oxidative stress and functional alterations in resistance arteries during the establishment of hypertension.
Objective— PDI (protein disulfide isomerase A1) was reported to support Nox1 (NADPH oxidase) activation mediated by growth factors in vascular smooth muscle cells. Our aim was to investigate the molecular mechanism by which PDI activates Nox1 and the functional implications of PDI in Nox1 activation in vascular disease. Approach and Results— Using recombinant proteins, we identified a redox interaction between PDI and the cytosolic subunit p47 phox in vitro. Mass spectrometry of crosslinked peptides confirmed redox-dependent disulfide bonds between cysteines of p47 phox and PDI and an intramolecular bond between Cys 196 and 378 in p47 phox . PDI catalytic Cys 400 and p47 phox Cys 196 were essential for the activation of Nox1 by PDI in vascular smooth muscle cells. Transfection of PDI resulted in the rapid oxidation of a redox-sensitive protein linked to p47 phox , whereas PDI mutant did not promote this effect. Mutation of p47 phox Cys 196, or the redox active cysteines of PDI, prevented Nox1 complex assembly and vascular smooth muscle cell migration. Proximity ligation assay confirmed the interaction of PDI and p47 phox in murine carotid arteries after wire injury. Moreover, in human atheroma plaques, a positive correlation between the expression of PDI and p47 phox occurred only in PDI family members with the a′ redox active site. Conclusions— PDI redox cysteines facilitate Nox1 complex assembly, thus identifying a new mechanism through which PDI regulates Nox activity in vascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.