BackgroundTo investigate the microbial composition of biofilms at inflamed peri-implant and periodontal tissues in the same subject, using 16S rRNA sequencing.MethodsSupra- and submucosal, and supra- and subgingival plaque samples were collected from 7 subjects suffering from diseased peri-implant and periodontal tissues. Bacterial DNA was isolated and 16S rRNA genes were amplified, sequenced and aligned for the identification of bacterial genera.Results43734 chimera-depleted, denoised sequences were identified, corresponding to 1 phylum, 8 classes, 10 orders, 44 families and 150 genera. The most abundant families or genera found in supramucosal or supragingival plaque were Streptoccocaceae, Rothia and Porphyromonas. In submucosal plaque, the most abundant family or genera found were Rothia, Streptococcaceae and Porphyromonas on implants. The most abundant subgingival bacteria on teeth were Prevotella, Streptococcaceae, and TG5. The number of sequences found for the genera Tannerella and Aggregatibacter on implants differed significantly between supra- and submucosal locations before multiple testing. The analyses demonstrated no significant differences between microbiomes on implants and teeth in supra- or submucosal and supra- or subgingival biofilms.ConclusionDiseased peri-implant and periodontal tissues in the same subject share similiar bacterial genera and based on the analysis of taxa on a genus level biofilm compositions may not account for the potentially distinct pathologies at implants or teeth.Electronic supplementary materialThe online version of this article (doi:10.1186/1472-6831-14-157) contains supplementary material, which is available to authorized users.
ZusammenfassungDigitale Prozessketten sind heute fester Bestandteil moderner Zahnmedizin und können bei komplexen Versorgungen mit konventionellen Abläufen zu teildigitalen Workflows kombiniert werden. Durchbissregistrate eignen sich dabei für die Modellzuordnung im Artikulator. Ziel dieser Studie war es, ein scanbares Bissnahmesilikon (Registrado Scan [RS], VOCO GmbH) und Vergleichsmaterialien (Registrado Xtra [RX] und Registrado Clear [RC], VOCO GmbH) hinsichtlich der Genauigkeit zu untersuchen. Dafür wurden bei insgesamt 40 Proband*innen Registrate durchgeführt, und mittels farbsensitivem Intraoralscan wurden intraorale angefärbte Kontakte als Referenz dokumentiert. Ober- und Unterkiefermodelle der Proband*innen wurden im Artikulator in Okklusion gebracht und digitalisiert. Die Abweichung der sich ergebenden Kontaktpunkte auf den Modellen zur intraoral erhobenen Referenz wurde in einer 3-D-Software vermessen.Es konnte gezeigt werden, dass sich die Werte in den Gruppen RS (0,52 ± 0,56 mm), RX (0,55 ± 0,53 mm) und RC (0,58 ± 0,53 mm) nicht signifikant voneinander unterscheiden (p ≥ 0,136). Das scanbare Material kann demnach sowohl in volldigitalen, in teildigitalen und auch in konventionellen Workflows angewendet werden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.