Dynamic Psychotherapy (DP) was developed to overcome the limitations of traditional psychoanalysis, responding to a broader demand of patients who seek help to cope with specific problems in the short term, such as Obsessive-Compulsive Disorder (OCD). OCD is a chronic disabling mental disorder that leads to substantial distress, functional disability and severe occupational and social impairments. Recognizing the literature gap in this field, and the improvements reported by dynamic therapists who have dealt with patients suffering from OCD, a study on the treatment of these patients was conducted in order to discuss the effects of this technique. The method involved a narrative literature review and the analysis of two clinical cases to discuss therapeutic processes, which include the specificities of OCD patients and the mechanisms adopted in the treatment through DP. The therapist’s active stance seemed to be essential to encourage the patient to face feared situations and identify the core conflict. Both patients who were treated through DP presented similarities, such as high anxiety, feelings of guilt and inhibition of aggressive and sexual impulses. Through emotional exploration, confrontation of defensive functioning and interpretative interventions of inner conflicts, patients had reached awareness of their hidden feelings and experiences, and their symptoms and feelings of guilt decreased. They also showed significant improvements in their interpersonal relationships. Although both treatments do not fit into short-term therapies, this technique has led to long-term results, providing evidence that DP may produce favorable outcomes in the treatment of OCD.
The Indaiá-I and Indaiá-II intrusions are hypabyssal, small-sized ultrabasic bodies belonging to the Cretaceous magmatism of the Alto Paranaiba Alkaline Province (southeast-central western Brazil). While Indaiá-I is classified as an archetypal group-I kimberlite, Indaiá-II (its satellite intrusion) presents several petrographic and chemical distinctions: (1) an ultrapotassic composition (similar to kamafugites), (2) lower volumes of olivine macrocrysts, (3) diopside as the main matrix phase (in contrast with the presence of monticellite in Indaiá-I), (4) high amounts of phlogopite, and (5) abundant felsic boudinaged and stretched microenclaves and crustal xenoliths. Disequilibrium features, such as embayment and sieve textures in olivine and clinopyroxene grains, are indicative of open-system processes in Indaiá-II. Mineral reactions observed in Indaiá-II (e.g., diopside formed at the expense of monticellite and olivine; phlogopite nearby crustal enclaves and close to olivine macrocrysts) point to an increase in the silica activity of the kimberlite magma; otherwise partially melted crustal xenoliths present kalsilite, generated by desilification reactions. The high Contamination Index (2.12–2.25) and the large amounts of crustal xenoliths (most of them totally transformed or with evidence of partial melting) indicate a high degree of crustal assimilation in the Indaiá-II intrusion. Calculated melts (after removal of olivine xenocrysts) of Indaiá-II have higher amounts of SiO2, Al2O3, K2O, slightly higher Rb/Sr ratios, lower Ce/Pb and Gd/Lu ratios, higher 87Sr/86Sr, and lower 143Nd/144Nd than those calculated for Indaiá-I. Crustal contamination models were developed considering mixing between the calculated melts of Indaiá-I and partial melts modeled from the granitoid country rocks. Mixing-model curves using major and trace elements and isotopic compositions are consistent with crustal assimilation processes with amounts of crustal contribution of ca. 30%. We conclude that (1) Indaiá-II is representative of a highly contaminated kimberlitic intrusion, (2) this contamination occurred by the assimilation of anatectic melts from the main crustal country rocks of this area, and (3) Indaiá-I and Indaiá-II could have had the same parent melt, but with different degrees of crustal contamination. Our petrological model also indicates that Indaiá-II is a satellite blind pipe linked to the main occurrence of Indaiá-I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.