We introduce a new spinfoam vertex to be used in models of 4d quantum gravity based on SU(2) and SO(4) BF theory plus constraints. It can be seen as the conventional vertex of SU(2) BF theory, the 15j symbol, in a particular basis constructed using SU(2) coherent states. This basis makes the geometric interpretation of the variables transparent: they are the vectors normal to the triangles within each tetrahedron. We study the condition under which these states can be considered semiclassical, and we show that the semiclassical ones dominate the evaluation of quantum correlations. Finally, we describe how the constraints reducing BF to gravity can be directly written in terms of the new variables, and how the semiclassicality of the states might improve understanding the correct way to implement the constraints.
Interwiners are the building blocks of spin-network states. The space of intertwiners is the quantization of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in Ê 3 : a polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of the geometry of the polyhedron: we give formulas for the edge lengths, the volume and the adjacency of its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a quantum polyhedron, thus generalizing the notion of quantum tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry of polyhedra. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-network states with nodes of arbitrary valence represent a collection of semiclassical polyhedra. Furthermore, we introduce an operator that measures the volume of a quantum polyhedron and examine its relation with the standard volume operator of loop quantum gravity. We also comment on the semiclassical limit of spinfoams with non-simplicial graphs.
A cornerstone of the loop quantum gravity program is the fact that the phase space of general relativity on a fixed graph can be described by a product of SU(2) cotangent bundles per edge. In this paper we show how to parametrize this phase space in terms of quantities describing the intrinsic and extrinsic geometry of the triangulation dual to the graph. These are defined by the assignment to each face of its area, the two unit normals as seen from the two polyhedra sharing it, and an additional angle related to the extrinsic curvature. These quantities do not define a Regge geometry, since they include extrinsic data, but a looser notion of discrete geometry which is twisted in the sense that it is locally well-defined, but the local patches lack a consistent gluing among each other. We give the Poisson brackets among the new variables, and exhibit a symplectomorphism which maps them into the Poisson brackets of loop gravity. The new parametrization has the advantage of a simple description of the gauge-invariant reduced phase space, which is given by a product of phase spaces associated to edges and vertices, and it also provides an abelianisation of the SU(2) connection. The results are relevant for the construction of coherent states, and as a byproduct, contribute to clarify the connection between loop gravity and its subset corresponding to Regge geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.