Fingering is a hydrodynamic instability that occurs when a more mobile fluid displaces a fluid of lower mobility. When the primary source of the mobility difference is viscosity, the instability is termed viscous fingering. Viscous fingering is often, though not always, undesirable in industrial processes, particularly secondary petroleum recovery. Linear stability analysis by Hejazi et al. has indicated that the production of a non-monotonic viscosity profile can stabilize the interface. Herein, we use step-growth polymerization at the interface between two miscible monomers as a model system. In particular a dithiol monomer displaced a diacrylate that reacted to form a linear polymer that behaves as a Newtonian fluid. Viscous fingering was imaged in a horizontal Hele-Shaw cell via Schlieren, which is sensitive to changes in index of refraction and therefore polymer conversion. By varying reaction rate via initiator concentration along with flow rate via a syringe pump, we were able to demonstrate increasing stabilization of the flow with increasing Damköhler number.
In South Australia’s Eyre Peninsula, groundwater provides 85% of the region’s reticulated water supply. Fresh groundwater resides within shallow karstic limestone aquifers recharged by incident rainfall. Water levels are very responsive to short-term climate variability and are at risk of sustained decline due to long-term drying trends and the further rainfall declines indicated by projections of future climate, thereby increasing risk to water security and groundwater-dependent ecosystems. In 2009, a new adaptive resource management approach was enabled through legislative reform that better addresses climate variability, particularly where aquifer robustness is low. This allows the volume of water available for licensed allocations to be varied annually depending on the current condition of the aquifer resources. A three-tiered trigger level policy varies the rate at which water allocations are limited in proportion to monitored changes in groundwater storage. The three trigger thresholds are specified for each discrete groundwater resource, based on levels of risk. We now have more than five years of observations and practice of this approach to learn of its efficacy and consequences for water users, the water resources, and the environment. It has proved to be an effective way to deal with the uncertainties in how and when climate may change and how water management principles can effectively respond. Our case study provides an example of the importance of legislative reform to enable adaptive water resource management to effectively tackle the challenges of water planning in a drying climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.