Particulate nitrate ( pNO 3 − ) has long been considered a permanent sink for NO x (NO and NO 2 ), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of pNO 3 − can recycle HONO and NO x back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in “renoxification” photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of pNO 3 − , thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies. Active release of HONO from aerosol has important implications for atmospheric oxidants such as OH and O 3 in both polluted and clean environments.
FTIR/smog chamber experiments and ab initio quantum calculations were performed to investigate the atmospheric chemistry of (CF)CFCN, a proposed replacement compound for the industrially important sulfur hexafluoride, SF. The present study determined k(Cl + (CF)CFCN) = (2.33 ± 0.87) × 10, k(OH + (CF)CFCN) = (1.45 ± 0.25) × 10, and k(O + (CF)CFCN) ≤ 6 × 10 cm molecule s, respectively, in 700 Torr of N or air diluent at 296 ± 2 K. The main atmospheric sink for (CF)CFCN was determined to be reaction with OH radicals. Quantum chemistry calculations, supported by experimental evidence, shows that the (CF)CFCN + OH reaction proceeds via OH addition to -C(≡N), followed by O addition to -C(OH)═N·, internal H-shift, and OH regeneration. The sole atmospheric degradation products of (CF)CFCN appear to be NO, COF, and CFC(O)F. The atmospheric lifetime of (CF)CFCN is approximately 22 years. The integrated cross section (650-1500 cm) for (CF)CFCN is (2.22 ± 0.11) × 10 cm molecule cm which results in a radiative efficiency of 0.217 W m ppb. The 100-year Global Warming Potential (GWP) for (CF)CFCN was calculated as 1490, a factor of 15 less than that of SF.
Neonicotinoids (NN), first introduced in 1991, are found on environmental surfaces where they undergo photolytic degradation. Photolysis studies of thin films of NN were performed using two approaches: (1) transmission FTIR, in which solid films of NN and the gas-phase products were analyzed simultaneously, and (2) attenuated-total-reflectance FTIR combined with transmission FTIR, in which solid films of NN and the gas-phase products were probed in the same experiment but not at the same time. Photolysis quantum yields using broadband irradiation centered at 313 nm were (2.2 ± 0.9) × 10 −3 for clothianidin (CLD), (3.9 ± 0.3) × 10 −3 for thiamethoxam (TMX), and (3.3 ± 0.5) × 10 −3 for dinotefuran (DNF), with all errors being ±1s. At 254 nm, which was used to gain insight into the wavelength dependence, quantum yields were in the range of (0.8−20) × 10 −3 for all NNs, including acetamiprid (ACM) and thiacloprid (TCD). Nitrous oxide (N 2 O), a potent greenhouse gas, was the only gas-phase product detected for the photolysis of nitroguanidines, with yields of ΔN 2 O/ΔNN > 0.5 in air at both 313 and 254 nm. The atmospheric lifetimes with respect to photolysis for CLD, TMX, and DNF, which absorb light in the actinic region, are estimated to be 15, 10, and 11 h, respectively, at a solar zenith angle of 35°and 12, 8, and 10 h at a solar zenith angle of 15°.
Abstract. Satellite-based retrievals of tropospheric NO2 columns are widely used to infer NOx (≡ NO + NO2) emissions. These retrievals rely on model information for the vertical distribution of NO2. The free tropospheric background above 2 km is particularly important because the sensitivity of the retrievals increases with altitude. Free tropospheric NOx also has a strong effect on tropospheric OH and ozone concentrations. Here we use observations from three aircraft campaigns (SEAC4RS, DC3, and ATom) and four atmospheric chemistry models (GEOS-Chem, GMI, TM5, and CAMS) to evaluate the model capabilities for simulating NOx in the free troposphere and attribute it to sources. NO2 measurements during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry (DC3) campaigns over the southeastern U.S. in summer show increasing concentrations in the upper troposphere above 10 km, which are not replicated by the GEOS-Chem, although the model is consistent with the NO measurements. Using concurrent NO, NO2, and ozone observations from a DC3 flight in a thunderstorm outflow, we show that the NO2 measurements in the upper troposphere are biased high, plausibly due to interference from thermally labile NO2 reservoirs such as peroxynitric acid (HNO4) and methyl peroxy nitrate (MPN). We find that NO2 concentrations calculated from the NO measurements and NO–NO2 photochemical steady state (PSS) are more reliable to evaluate the vertical profiles of NO2 in models. GEOS-Chem reproduces the shape of the PSS-inferred NO2 profiles throughout the troposphere for SEAC4RS and DC3 but overestimates NO2 concentrations by about a factor of 2. The model underestimates MPN and alkyl nitrate concentrations, suggesting missing organic NOx chemistry. On the other hand, the standard GEOS-Chem model underestimates NO observations from the Atmospheric Tomography Mission (ATom) campaigns over the Pacific and Atlantic oceans, indicating a missing NOx source over the oceans. We find that we can account for this missing source by including in the model the photolysis of particulate nitrate on sea salt aerosols at rates inferred from laboratory studies and field observations of nitrous acid (HONO) over the Atlantic. The median PSS-inferred tropospheric NO2 column density for the ATom campaign is 1.7 ± 0.44 × 1014 molec. cm−2, and the NO2 column density simulated by the four models is in the range of 1.4–2.4 × 1014 molec. cm−2, implying that the uncertainty from using modeled NO2 tropospheric columns over clean areas in the retrievals for stratosphere–troposphere separation is about 1 × 1014 molec. cm−2. We find from GEOS-Chem that lightning is the main primary NOx source in the free troposphere over the tropics and southern midlatitudes, but aircraft emissions dominate at northern midlatitudes in winter and in summer over the oceans. Particulate nitrate photolysis increases ozone concentrations by up to 5 ppbv (parts per billion by volume) in the free troposphere in the northern extratropics in the model, which would largely correct the low model bias relative to ozonesonde observations. Global tropospheric OH concentrations increase by 19 %. The contribution of the free tropospheric background to the tropospheric NO2 columns observed by satellites over the contiguous U.S. increases from 25 ± 11 % in winter to 65 ± 9 % in summer, according to the GEOS-Chem vertical profiles. This needs to be accounted for when deriving NOx emissions from satellite NO2 column measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.