We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.
On 24 August 2016, a Mw 6.0 normal‐faulting earthquake struck central Italy, causing about 300 fatalities and heavy damage. A geological survey collected the coseismic effects observed at the surface in order to evaluate two competing hypotheses about their nature: surface faulting versus gravitational deformation. We find that the most significant geological effect is a 5.2 km long alignment of ground ruptures along the Mount Vettore Fault System. These ruptures are independent from lithology, topography, morphology, and change in slope and exhibit an average dip‐slip displacement of ~13 cm. Geometry, kinematics, and dimensional properties of this zone of deformation strongly lead us to favor the primary surface faulting hypothesis that fits well the predicted estimates from experimental scaling law relationships. Our study provides relevant hints for surface faulting in extensional domains, contributing to implement the worldwide database of the moderate earthquakes.
[1] Application of light detection and ranging (LIDAR) technology in volcanology has developed rapidly over the past few years, being extremely useful for the generation of high-spatial-resolution digital elevation models and for mapping eruption products. However, LIDAR can also be used to yield detailed information about the dynamics of lava movement, emplacement processes occuring across an active lava flow field, and the volumes involved. Here we present the results of a multitemporal airborne LIDAR survey flown to acquire data for an active flow field separated by time intervals ranging from 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a spatial resolution of <1 m. This, together with accurate correction for systematic errors, finely tuned DEM-to-DEM coregistration and an accurate residual error assessment, permitted the quantification of the volumetric changes occuring across the flow field. We record a characteristic flow emplacement mode, whereby flow front advance and channel construction is fed by a series of volume pulses from the master vent. Volume pulses have a characteristic morphology represented by a wave that moves down the channel modifying existing channel-levee constructs across the proximal-medial zone and building new ones in the distal zone. Our high-resolution multitemporal LIDAR-derived DEMs allow calculation of the time-averaged discharge rates associated with such a pulsed flow emplacement regime, with errors under 1% for daily averaged values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.