This study focuses on the expansion of Phaseolus vulgaris in Europe. The pathways of distribution of beans into and across Europe were very complex, with several introductions from the New World that were combined with direct exchanges between European and other Mediterranean countries. We have analyzed here six chloroplast microsatellite (cpSSR) loci and two unlinked nuclear loci (for phaseolin types and Pv-shatterproof1). We have assessed the genetic structure and level of diversity of a large collection of European landraces of P. vulgaris (307) in comparison to 94 genotypes from the Americas that are representative of the Andean and Mesoamerican gene pools. First, we show that most of the European common bean landraces (67%) are of Andean origin, and that there are no strong differences across European regions for the proportions of the Andean and Mesoamerican gene pools. Moreover, cytoplasmic diversity is evenly distributed across European regions. Secondly, the cytoplasmic bottleneck that was due to the introduction of P. vulgaris into the Old World was very weak or nearly absent. This is in contrast to evidence from nuclear analyses that have suggested a bottleneck of greater intensity. Finally, we estimate that a relatively high proportion of the European bean germplasm (about 44%) was derived from hybridization between the Andean and Mesoamerican gene pools. Moreover, although hybrids are present everywhere in Europe, they show an uneven distribution, with high frequencies in central Europe, and low frequencies in Spain and Italy. On the basis of these data, we suggest that the entire European continent and not only some of the countries therein can be regarded as a secondary diversification center for P. vulgaris. Finally, we outline the relevance of these inter-gene pool hybrids for plant breeding.
Chloroplast microsatellites (cpSSRs) provide a powerful tool to study the genetic variation and evolution of plants. We have investigated the usefulness of 39 primer pairs tagging cpSSR loci on a set of eight different genera of Leguminosae (Papilionoideae subfamily) and five species belonging to the genus Phaseolus. Thirty-six 'universal' primer pairs were retrieved from the literature, one was re-designed and a further two were designed de novo. The cpSSR loci analysed were highly polymorphic across the individuals examined. Twenty-seven primer pairs were polymorphic in the overall sample, 18 within Phaseolus, and 16 in both P. vulgaris and P. coccineus. Analysis of the plastome sequences of four Leguminosae species (obtained from GenBank) showed that in the loci targeted by universal primer pairs: (i) the originally tagged cpSSRs can be lost; (ii) other cpSSRs can be present; and (iii) polymorphism arises not only from differences in the numbers of cpSSR repeats, but often from other insertion/deletion events. Multilocus linkage disequilibrium analysis suggests that homoplasy is not a major problem in our dataset, and principal component analysis indicates intelligible relationships among the species considered. Our study demonstrates that this set of chloroplast markers provides a useful tool to study the diversity and the evolution of several legumes, and particularly P. vulgaris and P. coccineus.
Relatively few studies have extensively analysed the genetic diversity of the runner bean through molecular markers. Here, we used six chloroplast microsatellites (cpSSRs) to investigate the cytoplasmic diversity of 331 European domesticated accessions of the scarlet runner bean (Phaseolus coccineus L.), including the botanical varieties albiflorus, bicolor and coccineus, and a sample of 49 domesticated and wild accessions from Mesoamerica. We further explored the pattern of diversity of the European landraces using 12 phenotypic traits on 262 individuals. For 158 European accessions, we studied the relationships between cpSSR polymorphisms and phenotypic traits. Additionally, to gain insights into the role of gene flow and migration, for a subset of 115 accessions, we compared and contrasted the results obtained by cpSSRs and phenotypic traits with those obtained in a previous study with 12 nuclear microsatellites (nuSSRs). Our results suggest that both demographic and selective factors have roles in the shaping of the population genetic structure of the European runner bean. In particular, we infer the existence of a moderate-to-strong cytoplasmic bottleneck that followed the expansion of the crop into Europe, and we deduce multiple domestication events for this species. We also observe an adaptive population differentiation in the phenology across a latitudinal gradient, which suggests that selection led to the diversification of the runner bean in Europe. The botanical varieties albiflorus, bicolor and coccineus, which are based solely on flower colour, cannot be distinguished based on these cpSSRs and nuSSRs, nor according to the 12 quantitative traits.
Studies of the level and the structure of the genetic diversity of local varieties of Phaseolus vulgaris are of fundamental importance, both for the management of genetic resources and to improve our understanding of the pathways of dissemination and the evolution of this species in Europe. We have here characterized 73 local bean populations from Sardinia (Italy) using seed traits and molecular markers (phaseolins, nuSSRs and cpSSRs). American landraces and commercial varieties were also included for comparison. We see that: (a) the Sardinian material is distinct from the commercial varieties considered; (b) the variation in the seed traits is high and it mostly occurs among populations (95%); (c) compared to the American sample and the commercial varieties, the Sardinian collection has a low level of diversity; (d) the majority ([95%) of the Sardinian individuals belong to the Andean gene pool; (e) the Sardinian material shows a strong genetic structure, both for cpSSRs and nuSSRs; (f) the nuSSRs and cpSSRs concur in differentiating between gene pools, but a lack of congruence between nuclear and chloroplast has been observed within gene pools; and (g) there are three putative hybrids between the Andean and Mesoamerican gene pools. Despite the relatively low level of diversity, which is probably due to a strong founder effect, the Sardinian landraces are worth being conserved and studied further because of their distinctiveness and because hybridization within and between the gene pools could generate variation that will be useful for breeding.
Here, we present a brief overview of the main studies conducted on the common bean (Phaseolus vulgaris L.) in Europe and other countries outside its centres of origin. We focus on the proportions of the Andean and Mesoamerican gene pools, and on the inter-gene pool hybridization events. In Europe, for chloroplast microsatellites, 67% of European germplasm is of Andean origin. Within Europe, interesting trends have been seen; indeed, the majority of the Andean type is found in the three macro-areas of the Iberian Peninsula, Italy and central-northern Europe, while, in eastern and south-eastern Europe, the proportion of the Mesoamerican type increased. On a local scale, the contribution of the Mesoamerican type is always low. On other continents, various situations are seen using different markers: in China and Brazil, the Mesoamerican gene pool prevails, while in an African sample, overall, both gene pools are equally represented, with differences in individual countries. The frequency of European bean genotypes deriving from at least one hybridization event was 44% with an uneven distribution. Interestingly, hybrids tend to have intermediate seed size in comparison with 'pure' Andean or Mesoamerican types. On other continents, very few hybrids are found, probably because of the different marker systems used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.