A series of multi-target-directed ligands (MTDLs), obtained by attachment of a hydroxyphenylbenzimidazole (BIM) unit to donepezil (DNP) active mimetic moiety (benzyl-piperidine/-piperazine) was designed, synthesized, and evaluated as potential anti-Alzheimer’s disease (AD) drugs in terms of biological activity (inhibition of acetylcholinesterase (AChE) and β–amyloid (Aβ) aggregation), metal chelation, and neuroprotection capacity. Among the DNP-BIM hybrids studied herein, the structural isomerization did not significantly improve the biological properties, while some substitutions, namely fluorine atom in each moiety or the methoxy group in the benzyl ring, evidenced higher cholinergic AChE activity. All the compounds are able to chelate Cu and Zn metal ions through their bidentate BIM moieties, but compound 5, containing a three-dentate chelating unit, is the strongest Cu(II) chelator. Concerning the viability on neuroblastoma cells, compounds 9 and 10 displayed the highest reduction of Aβ-induced cell toxicity. In silico calculations of some pharmacokinetic descriptors indicate that all the compounds but the nitro derivatives have good potential oral-bioavailability. Overall, it can be concluded that most of the studied DNP-BIM conjugates showed quite good anti-AD properties, therefore deserving to be considered in further studies with the aim of understanding and treating AD.
Photoredox catalytic cyclization of aryl enones in the presence of visible light, promoted either by metals or organic dyes, represent a valuable strategy for the synthesis of cycloalkanes. The development of a stereoselective version of such transformation, in the presence of the metal‐free catalyst Eosin Y was studied, with the aim to realize an efficient protocol for the in‐flow synthesis of enantiomerically enriched functionalized cyclopentane rings, taking advantage of the flow reactors technology. The use of a chiral auxiliary on the bisenone to be cyclized offers a straightforward and convenient option to exert a stereocontrol on the light‐driven cyclization. By exploiting Evans’ oxazolidinones, the stereoselective light‐driven cyclization affords, after the removal of the chiral auxiliary, a functionalized 1,2‐trans cyclopentane ring in up to 83/17 enantiomeric ratio. When the reaction was performed in continuo, in a homemade coil photoreactor, high yields were observed. The cyclization was also successfully realized in a 3D‐printed mesoreactor, without any change in the diastereoseletctivity of the process.
Eosin Y is one of the most popular organic dyes used as a photoredox catalyst and is largely employed in photochemical reactions both as a homogeneous and heterogeneous photocatalyst after immobilization. Immobilization of Eosin Y onto a solid support has many advantages, such as the possibility of recovery and reuse of the photocatalyst and the possibility of its use under flow conditions. In this paper, we report our findings on the immobilization of Eosin Y onto Merrifield resin and its application in the direct photochemical arylation of furan with aryldiazonium salts. The synthesized supported photocatalyst was used in batch reactions under heterogeneous conditions with different aryl diazonium salts, and its recovery and recycle were demonstrated for up to three times. The immobilized photocatalyst was then loaded in a packed-bed reactor and used under continuous flow conditions. The flow reaction allowed the arylated products to be obtained with higher productivity and space-time-yield than the batch in a very short reaction time.
The Front Cover shows how, like in a modern factory, it is possible to use light to build complex molecules in a continuous process. By exploiting chiral oxazolidinones, an efficient protocol for the in‐flow synthesis of enantiomerically enriched functionalized cyclopentane rings has been developed. The stereoselective light‐driven cyclization of bis(enones) in a coil photoreactor affords enantio‐enriched cyclopentanes. The possibility to perform the cyclization in a 3D‐printed mesoreactor was also successfully demonstrated. The authors acknowledge Dr. Sergio Rossi for the Cover picture idea. More information can be found in the Communication by M. Benaglia et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.