A multimeric protein that behaves functionally as an authentic ferritin has been isolated from the Gram-positive bacterium Listeria innocua. The purified protein has a molecular mass of about 240,000 Da and is composed of a single type of subunit (18,000 Da). L. innocua ferritin is able to oxidize and sequester about 500 iron atoms inside the protein cage. The primary structure reveals a high similarity to the DNA-binding proteins designated Dps. Among the proven ferritins, the most similar sequences are those of mammalian L chains that appear to share with L. innocua ferritin the negatively charged amino acids corresponding to the iron nucleation site. In L. innocua ferritin, an additional aspartyl residue may provide a strong complexing capacity that renders the iron oxidation and incorporation processes extremely efficient. This study provides the first experimental evidence for the existence of a non-heme bacterial ferritin that is related to Dps proteins, a finding that lends support to the recent suggestion of a common evolutionary origin of these two protein families.
Iron is required by most organisms, but is potentially toxic due to the low solubility of the stable oxidation state, Fe(III), and to the tendency to potentiate the production of reactive oxygen species, ROS. The reactivity of iron is counteracted by bacteria with the same strategies employed by the host, namely by sequestering the metal into ferritin, the ubiquitous iron storage protein. Ferritins are highly conserved, hollow spheres constructed from 24 subunits that are endowed with ferroxidase activity and can harbour up to 4500 iron atoms as oxy-hydroxide micelles. The release of the metal upon reduction can alter the microorganism-host iron balance and hence permit bacteria to overcome iron limitation. In bacteria, the relevance of the Dps (DNA-binding proteins from starved cells) family in iron storage-detoxification has been recognized recently. The seminal studies on the protein from Listeria innocua demonstrated that Dps proteins have ferritin-like activity and most importantly have the capacity to attenuate the production of ROS. This latter function allows bacterial pathogens that lack catalase, e.g. Porphyromonas gingivalis, to survive in an aerobic environment and resist to peroxide stress.
Listeria innocua Dps (DNA binding protein from starved cells) affords protection to DNA against oxidative damage and can accumulate about 500 iron atoms within its central cavity through a process facilitated by a ferroxidase center. The chemistry of iron binding and oxidation in Listeria Dps (LiDps, formerly described as a ferritin) using H(2)O(2) as oxidant was studied to further define the mechanism of iron deposition inside the protein and the role of LiDps in protecting DNA from oxidative damage. The relatively strong binding of 12 Fe(2+) to the apoprotein (K(D) approximately 0.023 microM) was demonstrated by isothermal titration calorimetry, fluorescence quenching, and pH stat experiments. Hydrogen peroxide was found to be a more efficient oxidant for the protein-bound Fe(2+) than O(2). Iron(II) oxidation by H(2)O(2) occurs with a stoichiometry of 2 Fe(2+)/H(2)O(2) in both the protein-based ferroxidation and subsequent mineralization reactions, indicating complete reduction of H(2)O(2) to H(2)O. Electron paramagnetic resonance (EPR) spin-trapping experiments demonstrated that LiDps attenuates the production of hydroxyl radical by Fenton chemistry. DNA cleavage assays showed that the protein, while not binding to DNA itself, protects it against the deleterious combination of Fe(2+) and H(2)O(2). The overall process of iron deposition and detoxification by LiDps is described by the following equations. For ferroxidation, Fe(2+) + Dps(Z)--> [(Fe(2+))-Dps](Z+1) + H(+) (Fe(2+) binding) and [(Fe(2+))-Dps](Z+1) + Fe(2+) + H(2)O(2) --> [(Fe(3+))(2)(O)(2)-Dps](Z+1) + 2H(+) (Fe(2+) oxidation/hydrolysis). For mineralization, 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH((core)) + 4H(+) (Fe(2+) oxidation/hydrolysis). These reactions occur in place of undesirable odd-electron redox processes that produce hydroxyl radical.
The role of the ferroxidase center in iron uptake and hydrogen peroxide detoxification was investigated in Listeria innocua Dps by substituting the iron ligands His31, His43, and Asp58 with glycine or alanine residues either individually or in combination. The X-ray crystal structures of the variants reveal only small alterations in the ferroxidase center region compared to the native protein. Quenching of the protein fluorescence was exploited to assess stoichiometry and affinity of metal binding. Substitution of either His31 or His43 decreases Fe(II) affinity significantly with respect to wt L. innocua Dps (K approximately 10(5) vs approximately 10(7) M(-)(1)) but does not alter the binding stoichiometry [12 Fe(II)/dodecamer]. In the H31G-H43G and H31G-H43G-D58A variants, binding of Fe(II) does not take place with measurable affinity. Oxidation of protein-bound Fe(II) increases the binding stoichiometry to 24 Fe(III)/dodecamer. However, the extent of fluorescence quenching upon Fe(III) binding decreases, and the end point near 24 Fe(III)/dodecamer becomes less distinct with increase in the number of mutated residues. In the presence of dioxygen, the mutations have little or no effect on the kinetics of iron uptake and in the formation of micelles inside the protein shell. In contrast, in the presence of hydrogen peroxide, with increase in the number of substitutions the rate of iron oxidation and the capacity to inhibit Fenton chemistry, thereby protecting DNA from oxidative damage, appear increasingly compromised, a further indication of the role of ferroxidation in conferring peroxide tolerance to the bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.