The effect of MTH1 inhibition on cancer cell survival has been elusive. Here we report that although silencing of MTH1 does not affect survival of melanoma cells, TH588, one of the first-in-class MTH1 inhibitors, kills melanoma cells through apoptosis independently of its inhibitory effect on MTH1. Induction of apoptosis by TH588 was not alleviated by MTH1 overexpression or introduction of the bacterial homolog of MTH1 that has 8-oxodGTPase activity but cannot be inhibited by TH588, indicating that MTH1 inhibition is not the cause of TH588-induced killing of melanoma cells. Although knockdown of MTH1 did not impinge on the viability of melanoma cells, it rendered melanoma cells sensitive to apoptosis induced by the oxidative stress inducer elesclomol. Of note, treatment with elesclomol also enhanced TH588-induced apoptosis, whereas a reactive oxygen species scavenger or an antioxidant attenuated the apoptosis triggered by TH588. Indeed, the sensitivity of melanoma cells to TH588 was correlated with endogenous levels of reactive oxygen species. Collectively, these results indicate that the cytotoxicity of TH588 toward melanoma cells is not associated with its inhibitory effect on MTH1, although it is mediated by cellular production of ROS.
Cancer cells in quiescence (G 0 phase) are resistant to death, and re-entry of quiescent cancer cells into the cellcycle plays an important role in cancer recurrence. Here we show that two p53-responsive miRNAs utilize distinct but complementary mechanisms to promote cancer cell quiescence by facilitating stabilization of p27. Purified quiescent B16 mouse melanoma cells expressed higher levels of miRNA-27b-3p and miRNA-455-3p relative to their proliferating counterparts. Induction of quiescence resulted in increased levels of these miRNAs in diverse types of human cancer cell lines. Inhibition of miRNA-27b-3p or miRNA-455-3p reduced, whereas its overexpression increased, the proportion of quiescent cells in the population, indicating that these miRNAs promote cancer cell quiescence. Accordingly, cancer xenografts bearing miRNA-27b-3p or miRNA-455-3p mimics were retarded in growth. miRNA-27b-3p targeted cyclin-dependent kinase regulatory subunit 1 (CKS1B), leading to reduction in p27 polyubiquitination mediated by S-phase kinase-associated protein 2 (Skp2).miRNA-455-3p targeted CDK2-associated cullin domain 1 (CAC1), which enhanced CDK2-mediated phosphorylation of p27 necessary for its polyubiquitination. Of note, the gene encoding miRNA-27b-3p was embedded in the intron of the chromosome 9 open reading frame 3 gene that was transcriptionally activated by p53. Similarly, the host gene of miRNA-455-3p, collagen alpha-1 (XXVII) chain, was also a p53 transcriptional target. Collectively, our results identify miRNA-27b-3p and miRNA-455-3p as important regulators of cancer cell quiescence in response to p53 and suggest that manipulating miRNA-27b-3p and miRNA-455-3p may constitute novel therapeutic avenues for improving outcomes of cancer treatment.Significance: Two novel p53-responsive microRNAs whose distinct mechanisms of action both stabilize p27 to promote cell quiescence and may serve as therapeutic avenues for improving outcomes of cancer treatment.
Although the expression of programmed death-ligand 1 (PD-L1) is an important mechanism by which cancer cells evade the immune system, PD-L1 expression in cancer cells is commonly associated with patients' responses to treatment with anti-programmed death 1/PD-L1 antibodies. However, how PD-L1 expression is regulated in melanoma cells remains to be fully elucidated. Here we report that the class I histone deacetylase (HDAC) HDAC8 controls transcriptional activation of PD-L1 by a transcription complex consisting of transcription factors homeobox A5 and signal transducer and activator of transcription 3. Inhibition of HDAC8 upregulated PD-L1 in melanoma cells. This was due to an increase in the activity of a fragment of the PD-L1 gene promoter that is enriched with binding sites for both homeobox A5 and signal transducer and activator of transcription 3. Indeed, knockdown of homeobox A5 or signal transducer and activator of transcription 3 abolished upregulation of PD-L1 by HDAC8 inhibition. Moreover, homeobox A5 and signal transducer and activator of transcription 3 were physically associated and appeared interdependent in activating PD-L1 transcription. Functional studies showed that HDAC8-mediated regulation of PD-L1 expression participated in modulating anti-melanoma T-cell responses. Collectively, these results identify HDAC8 as an important epigenetic regulator of PD-L1 expression, with implications for better understanding of the interaction between melanoma cells and the immune system.
Background: Glutathione S-transferases omega class 1 (GSTO1-1) is a unique member of the GST family regulating cellular redox metabolism and innate immunity through the promotion of LPS/TLR4/NLRP3 signalling in macrophages. House dust mite (HDM) triggers asthma by promoting type 2 responses and allergic inflammation via the TLR4 pathway. Although linked to asthma, the role of GSTO1-1 in facilitating type 2 responses and/or HDM-driven allergic inflammation is unknown. Objective:To determine the role of GSTO1-1 in regulating HDM-induced allergic inflammation in a preclinical model of asthma. Methods:Wild-type and GSTO1-1-deficient mice were sensitized and aeroallergen challenged with HDM to induce allergic inflammation and subsequently hallmark pathophysiological features characterized. Results:By contrast to HDM-challenged WT mice, exposed GSTO1-1-deficient mice had increased numbers of eosinophils and macrophages and elevated levels of eotaxin-1 and -2 in their lungs. M1 macrophage-associated factors, such as IL-1β and IL-6, were decreased in GSTO1-1-deficient mice. Conversely, M2 macrophage factors such as Arg-1 and Ym1 were up-regulated. HIF-1α expression was found to be higher in the absence of GSTO1-1 and correlated with the up-regulation of M2 macrophage markers. Furthermore, HIF-1α was shown to bind and activate the eotaxin-2 promotor. Hypoxic conditions induced significant increases in the levels of eotaxin-1 and -2 in GSTO1-deficient BMDMs, providing a potential link between inflammationinduced hypoxia and the regulation of M2 responses in the lung. Collectively, our results suggest that GSTO1-1 deficiency promotes M2-type responses and increased levels of nuclear HIF-1α, which regulates eotaxin (s)-induced eosinophilia and increased disease severity. Conclusion & Clinical Implication:We propose that GSTO1-1 is a novel negative regulator of TLR4-regulated M2 responses acting as an anti-inflammatory pathway. The discovery of a novel HIF-1α-induced eotaxin pathway identifies an unknown connection between hypoxia and the regulation of the severity of allergic inflammation in asthma. K E Y W O R D S asthma, chemokines, eosinophils, hypoxia, macrophages S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section. How to cite this article: Sokulsky LA, Goggins B, Sherwin S, et al. GSTO1-1 is an upstream suppressor of M2 macrophage skewing and HIF-1α-induced eosinophilic airway inflammation.Clin Exp Allergy. 2020;50:609-624. https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.