Protein misfolding and aggregation have been considered important in understanding many neurodegenerative diseases and recombinant biopharmaceutical production. Therefore, various traditional and modern techniques have been utilized to monitor protein aggregation in vitro and in living cells. Fibril formation, morphology and secondary structure content of amyloidogenic proteins in vitro have been monitored by molecular probes, TEM/AFM, and CD/FTIR analyses, respectively. Protein aggregation in living cells has been qualitatively or quantitatively monitored by numerous molecular folding reporters based on either fluorescent protein or enzyme. Aggregation of a target protein is directly correlated to the changes in fluorescence or enzyme activity of the folding reporter fused to the target protein, which allows non-invasive monitoring aggregation of the target protein in living cells. Advances in the techniques used to monitor protein aggregation in vitro and in living cells have greatly facilitated the understanding of the molecular mechanism of amyloidogenic protein aggregation associated with neurodegenerative diseases, optimizing culture conditions to reduce aggregation of biopharmaceuticals expressed in living cells, and screening of small molecule libraries in the search for protein aggregation inhibitors.
Protein misfolding and aggregation are implicated in numerous human diseases and significantly lower production yield of proteins expressed in mammalian cells. Despite the importance of understanding and suppressing protein aggregation in mammalian cells, a protein design and selection strategy to modulate protein misfolding/aggregation in mammalian cells has not yet been reported. In this work, we address the particular challenge presented by mutation-induced protein aggregation in mammalian cells. We hypothesize that an additional mutation(s) can be introduced in an aggregation-prone protein variant, spatially near the original mutation, to suppress misfolding and aggregation (cis-suppression). As a model protein, we chose human copper, zinc superoxide dismutase mutant (SOD1A4V) containing an alanine to valine mutation at residue 4, associated with the familial form of amyotrophic lateral sclerosis. We used the program RosettaDesign to identify Phe20 in SOD1A4V as a key residue responsible for SOD1A4V conformational destabilization. This information was used to rationally develop a pool of candidate mutations at the Phe20 site. After two rounds of mammalian-cell based screening of the variants, three novel SOD1A4V variants with a significantly reduced aggregation propensity inside cells were selected. The enhanced stability and reduced aggregation propensity of the three novel SOD1A4V variants were verified using cell fractionation and in vitro stability assays.
Protein misfolding and aggregation play important roles in many physiological processes. These include pathological protein aggregation in neurodegenerative diseases and biopharmaceutical protein aggregation during production in mammalian cells. In order to develop a simple non-invasive assay for protein misfolding and aggregation in mammalian cells, the folding reporter green fluorescent protein (GFP) system, originally developed for bacterial cells, was evaluated. As a folding reporter, GFP was fused to the C-terminus of a panel of human copper/zinc superoxide dismutase (SOD1) mutants with varying misfolding/aggregation propensities. Flow cytometric analysis of transfected HEK293T and NSC-34 cells revealed that the mean fluorescence intensities of the cells expressing GFP fusion of SOD1 variants exhibit an inverse correlation with the misfolding/aggregation propensities of the four SOD1 variants. Our results support the hypothesis that the extent of misfolding/aggregation of a target protein in mammalian cells can be quantitatively estimated by measuring the mean fluorescence intensity of the cells expressing GFP fusion. The assay method developed here will facilitate understanding of aggregation process of SOD1 variants and identifying aggregation inhibitors. The method also has great promise for misfolding/ aggregation study of other proteins in mammalian cells.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective death of motor neurons and skeletal muscle atrophy. The majority of ALS cases are acquired spontaneously, with inherited disease accounting for only 10 % of all cases. Recent studies provide compelling evidence that aggregates of misfolded proteins underlie both types of ALS. Small molecules such as artificial chaperones can prevent or even reverse the aggregation of proteins associated with various human diseases. However, their very high active concentration (micromolar range) severely limits their utility as drugs. We synthesized several ester and amide derivatives of chemical chaperones. The lead compound 14, 3-((5-((4,6-dimethylpyridin-2-yl)methoxy)-5-oxopentanoyl)oxy)-N,N-dimethylpropan-1-amine oxide shows, in the micromolar concentration range, both neuronal and astrocyte protective effects in vitro; at daily doses of 10 mg kg(-1) 14 improved the neurological functions and delayed body weight loss in ALS mice. Members of this new chemical chaperone derivative class are strong candidates for the development of new drugs for ALS patients.
Mutations introduced to wild-type proteins naturally, or intentionally via protein engineering, often lead to protein aggregation. In particular, protein aggregation within mammalian cells has significant implications in the disease pathology and biologics production; making protein aggregation modulation within mammalian cells a very important engineering topic. Previously, we showed that the semi-rational design approach can be used to reduce the intracellular aggregation of a protein by recovering the conformational stability that was lowered by the mutation. However, this approach has limited utility when no rational design approach to enhance conformational stability is readily available. In order to overcome this limitation, we investigated whether the modification of residues significantly displaced upon the original mutation is an effective way to reduce protein aggregation in mammalian cells. As a model system, human copper, zinc superoxide dismutase mutant containing glycine to alanine mutation at position 93 (SOD1G93A) was used. A panel of mutations was introduced into residues substantially displaced upon the G93A mutation. By using cell-based aggregation assays, we identified several novel variants of SOD1G93A with reduced aggregation propensity within mammalian cells. Our findings successfully demonstrate that the aggregation of a mutant protein can be suppressed by mutating the residues significantly displaced upon the original mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.