Aortoenteric fistula is a rare complication in abdominal aortic aneurysms (AAA), and an aortovesical fistula is even more rare. This is a report of a case of aortocolic and aortovesical fistulae in a 64-year-old man with AAA who was treated with an aortobiiliac bypass, a primary repair of the fistulated bladder, and a sigmoid colostomy.
Stray current corrosion in buried pipelines can cause serious material damage in a short period of time. However, the available methods for mitigating stray current corrosion are still insufficient. In this study, as a countermeasure against stray current corrosion, calcareous depositions were applied to reduce the total amount of current flowing into pipelines and to prevent corrosion. This study examined the reduction of stray current corrosion via the formation of calcareous deposit layers, composed of Ca, Mg, and mixed Ca and Mg, at the current inflow area. To verify the deposited layers, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were performed. The electrochemical tests revealed that all three types of calcareous deposits were able to effectively act as current barriers, and that they decreased the inflow current at the cathodic site. Among the deposits, the CaCO3 layer mitigated the stray current most effectively, as it was not affected by Mg(OH)2, which interferes with the growth of CaCO3. The calcium-based layer was very thick and dense, and it effectively blocked the inflowing stray current, compared with the other layers.
In order to predict the corrosion depth of a district heating pipeline, it is necessary to analyze various corrosion factors. In this study, the relationship between corrosion factors such as pH, dissolved oxygen, and operating time and corrosion depth was investigated using the Box–Behnken method within the response surface methodology. To accelerate the corrosion process, galvanostatic tests were conducted in synthetic district heating water. Subsequently, a multiple regression analysis was performed using the measured corrosion depth to derive a formula for predicting the corrosion depth as a function of the corrosion factors. As a result, the following regression formula was derived for predicting the corrosion depth: “corrosion depth (μm) = −133 + 17.1 pH + 0.00072 DO + 125.2 Time − 7.95 pH × Time + 0.002921 DO × Time”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.