OBJECTIVES. To compare three endotracheal tubes for leakage across the cuff (microaspiration) under a comprehensive set of simulated clinical situations. These were the Mallinckrodt TaperGuard (Covidien, US) with a tapered polyvinyl chloride cuff; the KimVent Microcuff (Kimberly-Clark Health Care, US) with a cylindrical polyurethane cuff; and a conventional Portex (Smiths Medical International Ltd, UK) with a globular polyvinyl chloride cuff. DESIGN. A benchtop experimental study. SETTING AND MATERIALS. A silicone cylinder serving as the model trachea was intubated with each of the three endotracheal tubes, one at a time. A total of 20 mL of water were added above the cuff and leakage measured every minute for 20 minutes under five simulated mechanical ventilation scenarios, including different positive end-expiratory pressure levels, and disconnection with and without spontaneous breathing efforts. Each scenario was studied under three cuff pressures of 10, 20 and 30 cm H2O, and then repeated with the application of a continuous suction force of 200 cm H2O, and leakage measured every minute for 3 minutes. RESULTS. The outcome of interest was the cumulative amount of leakage. The Microcuff endotracheal tubes with an ultrathin polyurethane cuff consistently provided the best protection against microaspiration under all simulated clinical situations, followed by TaperGuard with a tapered cuff, and lastly Portex with a globular polyvinyl chloride cuff. Clinical scenarios associated with the greatest leakage were mechanical ventilation with zero positive end-expiratory pressure, circuit disconnection with spontaneous breathing efforts, application of suction, and a low cuff pressure. CONCLUSIONS. Microcuff endotracheal tubes outperformed TaperGuard and Portex endotracheal tubes in preventing microaspiration, which is one of the major mechanisms for ventilator-associated pneumonia.
The neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), and red cell distribution width (RDW) are emerging biomarkers to predict outcomes in general ward patients. However, their role in the prognostication of critically ill patients with pneumonia is unclear. A total of 216 adult patients were enrolled over 2 years. They were classified into viral and bacterial pneumonia groups, as represented by influenza A virus and Streptococcus pneumoniae, respectively. Demographics, outcomes, and laboratory parameters were analysed. The prognostic power of blood parameters was determined by the respective area under the receiver operating characteristic curve (AUROC). Performance was compared using the APACHE IV score. Discriminant ability in differentiating viral and bacterial aetiologies was examined. Viral and bacterial pneumonia were identified in 111 and 105 patients, respectively. In predicting hospital mortality, the APACHE IV score was the best prognostic score compared with all blood parameters studied (AUC 0.769, 95% CI 0.705–0.833). In classification tree analysis, the most significant predictor of hospital mortality was the APACHE IV score (adjusted P = 0.000, χ2 = 35.591). Mechanical ventilation was associated with higher hospital mortality in patients with low APACHE IV scores ≤ 70 (adjusted P = 0.014, χ2 = 5.999). In patients with high APACHE IV scores > 90, age > 78 (adjusted P = 0.007, χ2 = 11.221) and thrombocytopaenia (platelet count ≤ 128, adjusted P = 0.004, χ2 = 12.316) were predictive of higher hospital mortality. The APACHE IV score is superior to all blood parameters studied in predicting hospital mortality. The single inflammatory marker with comparable prognostic performance to the APACHE IV score is platelet count at 48 h. However, there is no ideal biomarker for differentiating between viral and bacterial pneumonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.