The steady two-dimensional stagnation-point flow of an incompressible viscous fluid over an exponentially shrinking/stretching sheet is studied. The shrinking/stretching velocity, the free stream velocity, and the surface temperature are assumed to vary in a power-law form with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations before being solved numerically by a finite difference scheme known as the Keller-box method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. It is found that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique.
An analysis is carried out to study the steady two-dimensional stagnation-point flow of an incompressible viscous fluid towards a stretching vertical sheet. It is assumed that the sheet is stretched nonlinearly, with prescribed surface heat flux. This problem is governed by three parameters: buoyancy, velocity exponent, and velocity ratio. Both assisting and opposing buoyant flows are considered. The governing partial differential equations are transformed into a system of ordinary differential equations and solved numerically by finite difference Keller-box method. The flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Dual solutions are found in the opposing buoyant flows, while the solution is unique for the assisting buoyant flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.