This research investigated real-time fingertip detection in frames captured from the increasingly popular wearable device, smart glasses. The egocentric-view fingertip detection and character recognition can be used to create a novel way of inputting texts. We first employed Unity3D to build a synthetic dataset with pointing gestures from the first-person perspective. The obvious benefits of using synthetic data are that they eliminate the need for time-consuming and error-prone manual labeling and they provide a large and high-quality dataset for a wide range of purposes. Following that, a modified Mask Regional Convolutional Neural Network (Mask R-CNN) is proposed, consisting of a region-based CNN for finger detection and a three-layer CNN for fingertip location. The process can be completed in 25 ms per frame for 640×480 RGB images, with an average error of 8.3 pixels. The speed is high enough to enable real-time “air-writing”, where users are able to write characters in the air to input texts or commands while wearing smart glasses. The characters can be recognized by a ResNet-based CNN from the fingertip trajectories. Experimental results demonstrate the feasibility of this novel methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.