Glypican (GPC)-3 inhibits cell proliferation and regulates cell survival during development. This action is demonstrated by GPC3 loss-of-function mutations in humans and mice. Here, we show that the GPC3 core protein is processed by a furinlike convertase. This processing is essential for GPC3 modulating Wnt signaling and cell survival in vitro and for supporting embryonic cell movements in zebrafish. The processed GPC3 core protein is necessary and sufficient for the cell-specific induction of apoptosis, but in vitro effects on canonical and noncanonical Wnt signaling additionally require substitution of the core protein with heparan sulfate. Wnt 5A physically associates only with processed GPC3, and only a form of GPC3 that can be processed by a convertase is able to rescue epiboly and convergence/extension movements in GPC3 morphant embryos. Our data imply that the Simpson–Golabi–Behmel syndrome may in part result from a loss of GPC3 controls on Wnt signaling, and suggest that this function requires the cooperation of both the protein and the heparan sulfate moieties of the proteoglycan.
Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked syndrome characterized by pre- and postnatal overgrowth (gigantism), which clinically resembles the autosomal Beckwith-Wiedemann syndrome (BWS). Deletions and translocations involving the glypican-3 gene ( GPC3 ) have been shown to be associated with SGBS. Occasionally, these deletions also include the glypican-4 gene ( GPC4 ). Glypicans are heparan sulfate proteoglycans which have a role in the control of cell growth and cell division. We have examined the mutational status of the GPC3 and GPC4 genes in one patient with Perlman syndrome, three patients with overgrowth without syndrome diagnosis, ten unrelated SGBS-patients and 11 BWS patients. We identified one SGBS patient with a deletion of a GPC3 exon. Six SGBS patients showed point mutations in GPC3. One frameshift, three nonsense, and one splice mutation predict a loss-of-function of the glypican-3 protein. One missense mutation, W296R, changes an amino acid that is conserved in all glypicans identified so far. A GPC3 protein that reproduces this mutation is poorly processed and fails to increase the cell surface expression of heparan sulfate, suggesting that this missense mutation is also a loss-of-function mutation. In three SGBS patients and in all non-SGBS patients, no mutations could be identified. We found three single nucleotide polymorphisms in the GPC4 gene but no evidence for loss-of-function mutations in GPC4 associated with SGBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.