Background Pathogenic protist membrane transporter proteins play important roles not only in exchanging molecules into and out of cells but also in acquiring nutrients and biosynthetic compounds from their hosts. Currently, there is no centralized protist membrane transporter database published, which makes system-wide comparisons and studies of host-pathogen membranomes difficult to achieve. Results We analyzed over one million protein sequences from 139 protists with full or partial genome sequences. Putative transmembrane proteins were annotated by primary sequence alignments, conserved secondary structural elements, and functional domains. We have constructed the PPTdb (Pathogenic Protist Transmembranome database), a comprehensive membrane transporter protein portal for pathogenic protists and their human hosts. The PPTdb is a web-based database with a user-friendly searching and data querying interface, including hierarchical transporter classification (TC) numbers, protein sequences, functional annotations, conserved functional domains, batch sequence retrieving and downloads. The PPTdb also serves as an analytical platform to provide useful comparison/mining tools, including transmembrane ability evaluation, annotation of unknown proteins, informative visualization charts, and iterative functional mining of host-pathogen transporter proteins. Conclusions The PPTdb collected putative protist transporter proteins and offers a user-friendly data retrieving interface. Moreover, a pairwise functional comparison ability can provide useful information for identifying functional uniqueness of each protist. Finally, the host and non-host protein similarity search can fulfill the needs of comprehensive studies of protists and their hosts. The PPTdb is freely accessible at http://pptdb.cgu.edu.tw . Electronic supplementary material The online version of this article (10.1186/s12859-019-2857-7) contains supplementary material, which is available to authorized users.
Recently, the deep learning (DL) dimension of artificial intelligence has received much attention from biochemical researchers and thus has gradually become the key approach adopted in the area of biosensing applications. Studies have shown that the use of DL techniques for sensing can not only shorten the time of data analysis but also significantly increase the accuracy of data analysis and prediction, resulting in the performance improvement of biosensing systems in comparison to conventional methods. However, obtaining reliable equilibrium and rate constants of biomolecular interactions during the detection process remains difficult and time-consuming to date. In this study, we propose a transformed model based on the deep transfer learning and sequence-to-sequence autoencoder that can successfully transfer the SPR sensorgram to the protein-binding constants, that is, the association rate constant (k a) and dissociation rate constant (k d), which provide crucial information to understand the mechanisms of drug action and the functional structures of biomolecules. Experimentally, we first trained and tested the pre-trained model using the Langmuir model which generated ideal SPR sensorgrams and then we fine-tuned the pre-trained model through the augmented SPR sensorgrams which were synthesized by using the synthesized minority oversampling technique (SMOTE) through the moderate-scale experiment. Next, the fine-tuned model was inputted with a short experimental SPR sensorgram that only needs 110 s, and the sensorgram was directly transformed into a reconstructed ideal sensorgram. Finally, the binding kinetic constants, that is, k a and k d, as outputs, were obtained through fitting the reconstructed ideal sensorgram. The results showed that the prediction errors of k a and k d obtained by our model were less than 12 and 24%, respectively. Based on the convenience, accuracy, and reliability of the proposed DL approach, we believe our strategy significantly boosts the feasibility to monitor the binding affinity of antibodies online during production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.