Highly accurate detection of the intracranial hemorrhage without delay is a critical clinical issue for the diagnostic decision and treatment in an emergency room. In the context of a study on diagnostic accuracy, there is a tradeoff between sensitivity and specificity. In order to improve sensitivity while preserving specificity, we propose a cascade deep learning model constructed using two convolutional neural networks (CNNs) and dual fully convolutional networks (FCNs). The cascade CNN model is built for identifying bleeding; hereafter the dual FCN is to detect five different subtypes of intracranial hemorrhage and to delineate their lesions. Using a total of 135,974 CT images including 33,391 images labeled as bleeding, each of CNN/FCN models was trained separately on image data preprocessed by two different settings of window level/width. One is a default window (50/100[level/width]) and the other is a stroke window setting (40/40). By combining them, we obtained a better outcome on both binary classification and segmentation of hemorrhagic lesions compared to a single CNN and FCN model. In determining whether it is bleeding or not, there was around 1% improvement in sensitivity (97.91% [± 0.47]) while retaining specificity (98.76% [± 0.10]). For delineation of bleeding lesions, we obtained overall segmentation performance at 80.19% in precision and 82.15% in recall which is 3.44% improvement compared to using a single FCN model.
The recent medical applications of deep-learning (DL) algorithms have demonstrated their clinical efficacy in improving speed and accuracy of image interpretation. If the DL algorithm achieves a performance equivalent to that achieved by physicians in chest radiography (CR) diagnoses with Coronavirus disease 2019 (COVID-19) pneumonia, the automatic interpretation of the CR with DL algorithms can significantly reduce the burden on clinicians and radiologists in sudden surges of suspected COVID-19 patients. The aim of this study was to evaluate the efficacy of the DL algorithm for detecting COVID-19 pneumonia on CR compared with formal radiology reports. This is a retrospective study of adult patients that were diagnosed as positive COVID-19 cases based on the reverse transcription polymerase chain reaction among all the patients who were admitted to five emergency departments and one community treatment center in Korea from February 18, 2020 to May 1, 2020. The CR images were evaluated with a publicly available DL algorithm. For reference, CR images without chest computed tomography (CT) scans classified as positive for COVID-19 pneumonia were used given that the radiologist identified ground-glass opacity, consolidation, or other infiltration in retrospectively reviewed CR images. Patients with evidence of pneumonia on chest CT scans were also classified as COVID-19 pneumonia positive outcomes. The overall sensitivity and specificity of the DL algorithm for detecting COVID-19 pneumonia on CR were 95.6%, and 88.7%, respectively. The area under the curve value of the DL algorithm for the detection of COVID-19 with pneumonia was 0.921. The DL algorithm demonstrated a satisfactory diagnostic performance comparable with that of formal radiology reports in the CR-based diagnosis of pneumonia in COVID-19 patients. The DL algorithm may offer fast and reliable examinations that can facilitate patient screening and isolation decisions, which can reduce the medical staff workload during COVID-19 pandemic situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.