In this article, we present a rule-based approach for transliterating two mostly used orthographies in Sorani Kurdish. Our work consists of detecting a character in a word by removing the possible ambiguities and mapping it into the target orthography. We describe di erent challenges in Kurdish text mining and propose novel ideas concerning the transliteration task for Sorani Kurdish. Our transliteration system, named Wergor, achieves 82.79% overall precision and more than 99% in detecting the double-usage characters. We also present a manually transliterated corpus for Kurdish.
Despite the recent advances in applying language-independent approaches to various natural language processing tasks thanks to artificial intelligence, some language-specific tools are still essential to process a language in a viable manner. Kurdish language is a lessresourced language with a notable diversity in dialects and scripts and lacks basic language processing tools. To address this issue, we introduce a language processing toolkit to handle such a diversity in an efficient way. Our toolkit is composed of fundamental components such as text preprocessing, stemming, tokenization, lemmatization and transliteration and is able to get further extended by future developers. This project is publicly available 1 .
Machine translation has been a major motivation of development in natural language processing. Despite the burgeoning achievements in creating more efficient machine translation systems, thanks to deep learning methods, parallel corpora have remained indispensable for progress in the field. In an attempt to create parallel corpora for the Kurdish language, in this article, we describe our approach in retrieving potentially alignable news articles from multi-language websites and manually align them across dialects and languages based on lexical similarity and transliteration of scripts. We present a corpus containing 12,327 translation pairs in the two major dialects of Kurdish, Sorani and Kurmanji. We also provide 1,797 and 650 translation pairs in English-Kurmanji and English-Sorani. The corpus is publicly available under the CC BY-NC-SA 4.0 license.
1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.