In this study damage progression in unidirectional composite specimens is investigated. Transverse Crack Tension specimens are used to stimulate damage in a predetermined progressive sequence. Acoustic Emission (AE) registration technique and its location detection capability is used to identify and locate the damage modes during the tension tests. The k-means++ algorithm is applied to cluster similar AE events and obtain reliable correlations between the damage modes and AE characteristics. Damage modes at the end of interrupted tests are identified under an optical microscope and correlated with locations of AE clusters. It is seen that matrix cracks have high amplitude and duration, whereas delaminations have low amplitude and mid-duration, and fibre breaks have high average frequency characteristics. A finite element analysis was performed to predict the progressive failure behaviour including intralaminar failure and delaminations. The correlations between the AE clusters and damage modes are validated with the finite element model.
Analysis (FEA)the fibre direction [6,12,13,16,19,25,27].De Groot et. al [6] tested uncured prepreg and cured [0]8 laminates and observed the registration of high peak frequency AE events during UD tension tests which were believed to be due to fibre breaks. Ramirez-Jimenez and Loutas et. al [12,13] proposed a correlation between the high frequency AE events and the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.