Novel methods for neuronal entrainment [1-4] provide the unique opportunity to modulate perceptually relevant brain oscillations [5, 6] in a frequency-specific manner and to study their functional impact on distinct cognitive functions. Recently, evidence has emerged that tACS (transcranial alternating current stimulation) can modulate cortical oscillations [7-9]. However, the study of electrophysiological effects has been hampered so far by the absence of concurrent electroencephalogram (EEG) recordings. Here, we applied 10 Hz tACS to the parieto-occipital cortex and utilized simultaneous EEG recordings to study neuronal entrainment during stimulation. We pioneer a novel approach for simultaneous tACS-EEG recordings and successfully separate stimulation artifacts from ongoing and event-related cortical activity. Our results reveal that 10 Hz tACS increases parieto-occipital alpha activity and synchronizes cortical oscillators with similar intrinsic frequencies to the entrainment frequency. Additionally, we demonstrate that tACS modulates target detection performance in a phase-dependent fashion highlighting the causal role of alpha oscillations for visual perception.
When viewing ambiguous stimuli, conscious perception alternates spontaneously between competing interpretations of physically unchanged stimulus information. As one possible neural mechanism underlying the perceptual switches, it has been suggested that neurons dynamically change their pattern of synchronized oscillatory activity in the gamma band (30-80 Hz). In support of this hypothesis, there is correlative evidence from human electroencephalographic (EEG) studies for gamma band modulations during ambiguous perception. To establish a causal role of gamma band oscillations in the current study, we applied transcranial alternating current stimulation (tACS) at 40 Hz over occipital-parietal areas of both hemispheres during the presentation of bistable apparent motion stimuli that can be perceived as moving either horizontally or vertically. In this paradigm, the switch between horizontal and vertical apparent motion is likely to involve a change in interhemispheric functional coupling. We examined gamma tACS effects on the durations of perceived horizontal and vertical motion as well as on interhemispheric EEG coherence and found a decreased proportion of perceived horizontal motion together with an increase of interhemispheric gamma band coherence. In a control experiment using 6 Hz tACS, we did not observe any stimulation effects on behavior or coherence. Furthermore, external stimulation at 40 Hz was only effective when applied with 180° phase difference between hemispheres (anti-phase), as compared to in-phase stimulation with 0° phase difference. These findings suggest that externally desynchronizing gamma oscillations between hemispheres impairs interhemispheric motion integration and in turn biases conscious experience of bistable apparent motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.