Multi-application execution in Graphics Processing Units (GPUs), a promising way to utilize GPU resources, is still challenging. Some pieces of prior work (e.g., spatial multitasking) have limited opportunity to improve resource utilization, while other works, e.g., simultaneous multi-kernel, provide fine-grained resource sharing at the price of unfair execution. This paper proposes a new multi-application paradigm for GPUs, called NURA, that provides high potential to improve resource utilization and ensures fairness and Quality-of-Service (QoS). The key idea is that each streaming multiprocessor (SM) executes Cooperative Thread Arrays (CTAs) belong to only one application (similar to the spatial multi-tasking) and shares its unused resources with the SMs running other applications demanding more resources. NURA handles resource sharing process mainly using a software approach to provide simplicity, low hardware cost, and flexibility. We also perform some hardware modifications as an architectural support for our software-based proposal. We conservatively analyze the hardware cost of our proposal, and observe less than 1.07% area overhead with respect to the whole GPU die. Our experimental results over various mixes of GPU workloads show that NURA improves GPU system throughput by 26% compared to state-of-the-art spatial multi-tasking, on average, while meeting the QoS target. In terms of fairness, NURA has almost similar results to spatial multitasking, while it outperforms simultaneous multi-kernel by an average of 76%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.