Access to clinical information during interventions is an important aspect to support the surgeon and his team in the OR. The OR-Pad research project aims at displaying clinically relevant information close to the patient during surgery. With the OR-Pad system, the surgeon shall be able to access case-specific information, displayed on a sterilepackaged, portable display device. Therefore, information shall be prepared before surgery and also be available afterwards. The project follows an user-centered design process. Within the third iteration, the interaction concept was finalized, resulting in an application that can be used in two modes, mobile and intraoperative, to support the surgeon before/after and during surgery, respectively. By supporting the surgeon perioperatively, it is expected to improve the information situation in the OR and thereby the quality of surgical results. Based on this concept, the system architecture was designed in detail, using a client-server architecture. Components, communication interfaces, exchanged data, and intended standards for data exchange of the OR-Pad system including connecting systems were conceived. Expert interviews by using a clickable prototype were conducted to evaluate the concepts.
One of the key challenges for automatic assistance is the support of actors in the operating room depending on the status of the procedure. Therefore, context information collected in the operating room is used to gain knowledge about the current situation. In literature, solutions already exist for specific use cases, but it is doubtful to what extent these approaches can be transferred to other conditions. We conducted a comprehensive literature research on existing situation recognition systems for the intraoperative area, covering 274 articles and 95 cross-references published between 2010 and 2019. We contrasted and compared 58 identified approaches based on defined aspects such as used sensor data or application area. In addition, we discussed applicability and transferability. Most of the papers focus on video data for recognizing situations within laparoscopic and cataract surgeries. Not all of the approaches can be used online for real-time recognition. Using different methods, good results with recognition accuracies above 90% could be achieved. Overall, transferability is less addressed. The applicability of approaches to other circumstances seems to be possible to a limited extent. Future research should place a stronger focus on adaptability. The literature review shows differences within existing approaches for situation recognition and outlines research trends. Applicability and transferability to other conditions are less addressed in current work. Graphical abstract
Public transport maps are typically designed in a way to support route finding tasks for passengers, while they also provide an overview about stations, metro lines, and city-specific attractions. Most of those maps are designed as a static representation, maybe placed in a metro station or printed in a travel guide. In this paper, we describe a dynamic, interactive public transport map visualization enhanced by additional views for the dynamic passenger data on different levels of temporal granularity. Moreover, we also allow extra statistical information in form of density plots, calendar-based visualizations, and line graphs. All this information is linked to the contextual metro map to give a viewer insights into the relations between time points and typical routes taken by the passengers. We also integrated a graph-based view on user-selected routes, a way to interactively compare those routes, an attribute- and property-driven automatic computation of specific routes for one map as well as for all available maps in our repertoire, and finally, also the most important sights in each city are included as extra information to include in a user-selected route. We illustrate the usefulness of our interactive visualization and map navigation system by applying it to the railway system of Hamburg in Germany while also taking into account the extra passenger data. As another indication for the usefulness of the interactively enhanced metro maps we conducted a controlled user experiment with 20 participants. Graphical abstract
Purpose Supporting the surgeon during surgery is one of the main goals of intelligent ORs. The OR-Pad project aims to optimize the information flow within the perioperative area. A shared information space should enable appropriate preparation and provision of relevant information at any time before, during, and after surgery. Methods Based on previous work on an interaction concept and system architecture for the sterile OR-Pad system, we designed a user interface for mobile and intraoperative (stationary) use, focusing on the most important functionalities like clear information provision to reduce information overload. The concepts were transferred into a high-fidelity prototype for demonstration purposes. The prototype was evaluated from different perspectives, including a usability study. Results The prototype’s central element is a timeline displaying all available case information chronologically, like radiological images, labor findings, or notes. This information space can be adapted for individual purposes (e.g., highlighting a tumor, filtering for own material). With the mobile and intraoperative mode of the system, relevant information can be added, preselected, viewed, and extended during the perioperative process. Overall, the evaluation showed good results and confirmed the vision of the information system. Conclusion The high-fidelity prototype of the information system OR-Pad focuses on supporting the surgeon via a timeline making all available case information accessible before, during, and after surgery. The information space can be personalized to enable targeted support. Further development is reasonable to optimize the approach and address missing or insufficient aspects, like the holding arm and sterility concept or new desired features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.