PV waste management will gain relevance proportionally to the amounts of waste that are expected to arise with the phasing-out of old installations in the upcoming years and decades. The Life Cycle Assessment (LCA) methodology is used here to analyze the environmental performance of photovoltaic systems and the waste management methods that have been developed recently. Several LCA studies have already been performed for PV technologies, but in most cases these do not include the end of life stage, thus there is still uncertainty about the impacts of recycling on the environmental footprint of PV electricity. The present study offers a more detailed analysis of different end-of-life approaches for the main photovoltaic technologies that are found on the market. The results from the analysis demonstrate that recycling has the potential to improve the environmental profile of PV electricity but at the same time there is room for further improvements in developing dedicated recycling technologies.
A material flow model for the production of Bifacial Selective Emitter 60-cell p-type Cz PERC (Passivated Emitter and Rear Contacted) glass-backsheet modules with aluminium frame was built. The selected module represents mature technologies in the PV industry and their manufacturing is considered to take place in China in a production cluster with an annual module capacity of 5 GWp. In a first step, data acquisition and validation for wafer, cell and module fabs took place. The data were used to generate the reference system lifecycle inventories (LCI) and extended waste databases for the reference wafers, cells and modules. A set of potential circularity actions, such as the vertical integration of the operations and waste revalorisation strategies, had been proposed and their environmental performance and cost assessed by means of a life cycle assessment (LCA) and a total cost of ownership (TCO). Our results show that 87% of the waste can be reduced and revalorised, this represents a circular flow of raw materials of 18,756 Mg per year from a 5GWp PV module production cluster. Environmental impact reductions of 0.6–2.3% are estimated for different impact categories. We also estimate a cost reduction potential of 2.59% from total module costs.
The large-scale deployment of photovoltaics (PV) is a central pillar in decarbonizing energy systems and reaching climate goals. Although PV is inherently associated to environmental awareness, it is not immune to reputational risks nor exempt of a responsibility for transparency and sustainability leadership. So far, advances in the PV industry have mainly been shaped by cost-reduction targets. We identified in previous works 16 topics where the PV sector comes short in addressing the United Nations Sustainable Development Goal 12 (SDG 12) “Ensure sustainable consumption and production patterns”. In this paper, practical approaches to address each of these sustainability gaps are proposed. The best-practices identified cover all aspects of sustainability as defined by SDG 12–from resource use and hazardous substances through corporate reporting and risk assessment to due diligence and waste management. Insights on methodological needs to improve sustainability assessment and accounting in PV are also provided. The compiled list of actions needed, although not intended to be exhaustive, constitutes a starting point for stakeholders to raise their ambitions and achieve more sustainability in PV value chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.