Several recent works in communication systems have proposed to leverage the power of neural networks in the design of encoders and decoders. In this approach, these blocks can be tailored to maximize the transmission rate based on aggregated samples from the channel. Motivated by the fact that, in many communication schemes, the achievable transmission rate is determined by a conditional mutual information, this paper focuses on neural-based estimators for this information-theoretic quantity. Our results are based on variational bounds for the KL-divergence and, in contrast to some previous works, we provide a mathematically rigorous lower bound. However, additional challenges with respect to the unconditional mutual information emerge due to the presence of a conditional density function; this is also addressed here.
In this paper, we study a hypothesis test to determine the underlying directed graph structure of nodes in a network, where the nodes represent random processes and the direction of the links indicate a causal relationship between said processes. Specifically, a k-th order Markov structure is considered for them, and the chosen metric to determine a connection between nodes is the directed information. The hypothesis test is based on the empirically calculated transition probabilities which are used to estimate the directed information. For a single edge, it is proven that the detection probability can be chosen arbitrarily close to one, while the false alarm probability remains negligible. When the test is performed on the whole graph, we derive bounds for the false alarm and detection probabilities, which show that the test is asymptotically optimal by properly setting the threshold test and using a large number of samples. Furthermore, we study how the convergence of the measures relies on the existence of links in the true graph.
Novel approaches to estimate information measures using neural networks are well-celebrated in recent years both in the information theory and machine learning communities. These neural-based estimators are shown to converge to the true values when estimating mutual information and conditional mutual information using independent samples. However, if the samples in the dataset are not independent, the consistency of these estimators requires further investigation. This is of particular interest for a more complex measure such as the directed information, which is pivotal in characterizing causality and is meaningful over time-dependent variables. The extension of the convergence proof for such cases is not trivial and demands further assumptions on the data. In this paper, we show that our neural estimator for conditional mutual information is consistent when the dataset is generated with samples of a stationary and ergodic source. {In other words, we show that our information estimator using neural networks converges asymptotically to the true value with probability one. Besides universal functional approximation of neural networks, a core lemma to show the convergence is Birkhoff's ergodic theorem. Additionally, we use the technique to estimate directed information and demonstrate the effectiveness of our approach in simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.